On the Semiring of Skew Polynomials over a Bezout Semiring
In the paper, we study the semiring of skew polynomials over a Rickart Bezout semiring. Namely, let every left annihilator ideal of a semiring be an ideal. Then the semiring of skew polynomials is a semiring without nilpotent elements, and every its finitely generated left monic ideal is principal i...
Gespeichert in:
Veröffentlicht in: | Mathematical Notes 2022-04, Vol.111 (3-4), p.331-342 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the paper, we study the semiring of skew polynomials over a Rickart Bezout semiring. Namely, let every left annihilator ideal of a semiring
be an ideal. Then the semiring of skew polynomials
is a semiring without nilpotent elements, and every its finitely generated left monic ideal is principal if and only if
is a left Rickart left Bezout semiring,
is a rigid endomorphism, and
is invertible for any nonzerodivisor
. We also obtain a characterization of the semiring
in terms of Pierce stalks of the semiring
. The structure of left monic ideals of the semiring of skew polynomials over a left Rickart left Bezout semiring is clarified. |
---|---|
ISSN: | 0001-4346 1067-9073 1573-8876 |
DOI: | 10.1134/S0001434622030014 |