On the Semiring of Skew Polynomials over a Bezout Semiring

In the paper, we study the semiring of skew polynomials over a Rickart Bezout semiring. Namely, let every left annihilator ideal of a semiring be an ideal. Then the semiring of skew polynomials is a semiring without nilpotent elements, and every its finitely generated left monic ideal is principal i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2022-04, Vol.111 (3-4), p.331-342
Hauptverfasser: Babenko, M. V., Chermnykh, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the paper, we study the semiring of skew polynomials over a Rickart Bezout semiring. Namely, let every left annihilator ideal of a semiring be an ideal. Then the semiring of skew polynomials is a semiring without nilpotent elements, and every its finitely generated left monic ideal is principal if and only if is a left Rickart left Bezout semiring, is a rigid endomorphism, and is invertible for any nonzerodivisor . We also obtain a characterization of the semiring in terms of Pierce stalks of the semiring . The structure of left monic ideals of the semiring of skew polynomials over a left Rickart left Bezout semiring is clarified.
ISSN:0001-4346
1067-9073
1573-8876
DOI:10.1134/S0001434622030014