The relation between the number of leaves of a tree and its diameter

Let L ( n, d ) denote the minimum possible number of leaves in a tree of order n and diameter d . Lesniak (1975) gave the lower bound B ( n,d ) = ⌈2( n − 1)/ d ⌉ for L ( n,d ). When d is even, B ( n,d ) = L ( n,d ). But when d is odd, B ( n,d ) is smaller than L ( n,d ) in general. For example, B (2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak Mathematical Journal 2022, Vol.72 (2), p.365-369
Hauptverfasser: Qiao, Pu, Zhan, Xingzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let L ( n, d ) denote the minimum possible number of leaves in a tree of order n and diameter d . Lesniak (1975) gave the lower bound B ( n,d ) = ⌈2( n − 1)/ d ⌉ for L ( n,d ). When d is even, B ( n,d ) = L ( n,d ). But when d is odd, B ( n,d ) is smaller than L ( n,d ) in general. For example, B (21, 3) = 14 while L (21, 3) = 19. In this note, we determine L ( n, d ) using new ideas. We also consider the converse problem and determine the minimum possible diameter of a tree with given order and number of leaves.
ISSN:0011-4642
1572-9141
DOI:10.21136/CMJ.2021.0492-20