The relation between the number of leaves of a tree and its diameter
Let L ( n, d ) denote the minimum possible number of leaves in a tree of order n and diameter d . Lesniak (1975) gave the lower bound B ( n,d ) = ⌈2( n − 1)/ d ⌉ for L ( n,d ). When d is even, B ( n,d ) = L ( n,d ). But when d is odd, B ( n,d ) is smaller than L ( n,d ) in general. For example, B (2...
Gespeichert in:
Veröffentlicht in: | Czechoslovak Mathematical Journal 2022, Vol.72 (2), p.365-369 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
L
(
n, d
) denote the minimum possible number of leaves in a tree of order
n
and diameter
d
. Lesniak (1975) gave the lower bound
B
(
n,d
) = ⌈2(
n
− 1)/
d
⌉ for
L
(
n,d
). When
d
is even,
B
(
n,d
) =
L
(
n,d
). But when
d
is odd,
B
(
n,d
) is smaller than
L
(
n,d
) in general. For example,
B
(21, 3) = 14 while
L
(21, 3) = 19. In this note, we determine
L
(
n, d
) using new ideas. We also consider the converse problem and determine the minimum possible diameter of a tree with given order and number of leaves. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.21136/CMJ.2021.0492-20 |