Exploiting White Spaces for Karachi through Artificial Intelligence: Comparison of NARX and Cascade Feed Forward Back Propagation

Marriage of Internet of Everything (IoE) and Cognitive Radio driven technologies seems near under the umbrella of 6G and 6G+ communication standard. The expected new services that will be introduced in 6G communication will require high data rates for transmission. The learning based algorithms will...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2020, Vol.11 (2)
Hauptverfasser: Naqvi, Shabbar, Ali, Minaal, Zeb, Aamir, Iqbal, Yamna, Rahim, Abdul, Khadim, Saima, Altaf, Talat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Marriage of Internet of Everything (IoE) and Cognitive Radio driven technologies seems near under the umbrella of 6G and 6G+ communication standard. The expected new services that will be introduced in 6G communication will require high data rates for transmission. The learning based algorithms will play a key role towards successful implementation of these novel technologies and evolving next generation wireless standards for providing ubiquitous connectivity. This paper investigates performance of two artificial neural network (ANN) based algorithms for Karachi. These include Nonlinear autoregressive exogenous Algorithm (NARX) and cascade feed forward back propagation neural network (CFFBNN) scheme. A dataset for Karachi is also developed for 1805 MHZ. The results of the two algorithms are compared that show Mean Square Error (MSE) for CFFBNN is 6.8877e-5 at epoch 16 and MSE for NARX is 3.1506e-11 at epoch 26. Hence, exploiting computational performance, NARX performs much superior than the classis CFFBNN algorithm.
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2020.0110271