Enhanced Accuracy of Heart Disease Prediction using Machine Learning and Recurrent Neural Networks Ensemble Majority Voting Method
To solve many problems in data science, Machine Learning (ML) techniques implicates artificial intelligence which are commonly used. The major utilization of ML is to predict the conclusion established on the extant data. Using an established dataset machine determine emulate and spread them to an u...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2020, Vol.11 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To solve many problems in data science, Machine Learning (ML) techniques implicates artificial intelligence which are commonly used. The major utilization of ML is to predict the conclusion established on the extant data. Using an established dataset machine determine emulate and spread them to an unfamiliar data sets to anticipate the conclusion. A few classification algorithm’s accuracy prediction is satisfactory, although other perform limited accuracy. Different ML and Deep Learning (DL) networks established on ANN have been extensively recommended for the disclosure of heart disease in antecedent researches. In this paper, we used UCI Heart Disease dataset to test ML techniques along with conventional methods (i.e. random forest, support vector machine, K-nearest neighbor), as well as deep learning models (i.e. long short-term-memory and gated-recurrent unit neural networks). To improve the accuracy of weak algorithms we explore voting based model by combining multiple classifiers. A provisional cogent approach was used to regulate how the ensemble technique can be enforced to improve an accuracy in the heart disease prediction. The strength of the proposed ensemble approach such as voting based model is compelling in improving the prognosis accuracy of anemic classifiers and established adequate achievement in analyze risk of heart disease. A superlative increase of 2.1% accuracy for anemic classifiers was attained with the help of an ensemble voting based model. |
---|---|
ISSN: | 2158-107X 2156-5570 |
DOI: | 10.14569/IJACSA.2020.0110369 |