Enhancing Disease Prediction on Imbalanced Metagenomic Dataset by Cost-Sensitive

Imbalanced datasets usually appear popularly to many real-world applications and studies. For metagenomic data, we also face the same issue where the number of patients is greater than the number of healthy individuals or vice versa. In this study, we propose a method to handle the imbalanced datase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2020, Vol.11 (7)
Hauptverfasser: Nguyen, Hai Thanh, Bao, Toan, Minh, Quan, Hoang, Huong, Phuoc, Trung, Cong, Nghi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Imbalanced datasets usually appear popularly to many real-world applications and studies. For metagenomic data, we also face the same issue where the number of patients is greater than the number of healthy individuals or vice versa. In this study, we propose a method to handle the imbalanced datasets issues by Cost-sensitive approach. The proposed method is evaluated on an imbalanced metagenomic dataset related to Inflammatory bowel disease to do prediction tasks. Our method reaches a noteworthy improvement on prediction performance with deep learning algorithms including a MultiLayer Perceptron and a Convolutional Neural Neural Network with the proposed cost-sensitive for Metagenome-based Disease Prediction tasks.
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2020.0110778