Integral Representations of Bargmann Type for the β-Modified Bergman Space on Punctured Unit Disc
We deal with the integral representation of Bargmann type of the functions belonging to the β -modified Bergman space on the punctured unit disc, by means of some special kernel-distribution involving the confluent hypergeometric functions and generalizing the classical second Bargmann transform. As...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2022, Vol.45 (3), p.1367-1381 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We deal with the integral representation of Bargmann type of the functions belonging to the
β
-modified Bergman space on the punctured unit disc, by means of some special kernel-distribution involving the confluent hypergeometric functions and generalizing the classical second Bargmann transform. As application, we derive integral formula on the unit disc for the product of confluent hypergeometric functions, by considering the associated fractional Hankel transform. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-022-01244-w |