Face Recognition based on Convolution Neural Network and Scale Invariant Feature Transform

Recently, Face Recognition (FR) has been received wide attention from both the research community and the cyber security industrial companies. Low accuracy of recognition is considered a main challenge when it comes to talking about employing the Artificial Intelligence (AI) for FR. In this work, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2021, Vol.12 (2)
Hauptverfasser: ALAMRI, Jamilah, HARRABI, Rafika, BEN, Slim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, Face Recognition (FR) has been received wide attention from both the research community and the cyber security industrial companies. Low accuracy of recognition is considered a main challenge when it comes to talking about employing the Artificial Intelligence (AI) for FR. In this work, the Scale Invariant Feature Transform (SIFT) and the Convolutional Neural Networks (CNN) feature extraction methods are utilized to build an AI based classifier. The CNN extracts features through both the convolutional and polling layers, while the SIFT extracts features depending on the scale space, directions, and histograms of points of interest. The features that are extracted by the CNN and the SIFT methods are used as an inputs for the KNN classifier. The experimental results with 400 test images of 40 persons, with 240 images are randomly chosen as training sets and 160 images from test sets, demonstrate in terms of accuracy, sensitivity, and error rate, that the CNN-based KNN classifier achieved better results when compared to the SIFT-based KNN classifier (accuracy = 97%, sensitivity = 93%, error rate = 3%).
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2021.0120281