Indoor Localization and Navigation based on Deep Learning using a Monocular Visual System
Now-a-days, computer systems are important for artificial vision systems to analyze the acquired data to realize crucial tasks, such as localization and navigation. For successful navigation, the robot must interpret the acquired data and determine its position to decide how to move through the envi...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2021, Vol.12 (6) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Now-a-days, computer systems are important for artificial vision systems to analyze the acquired data to realize crucial tasks, such as localization and navigation. For successful navigation, the robot must interpret the acquired data and determine its position to decide how to move through the environment. This paper proposes an indoor mobile robot visual-localization and navigation approach for autonomous navigation. A convolutional neural network and background modeling are used to locate the system in the environment. Object detection is based on copy-move detection, an image forensic technique, extracting features from the image to identify similar regions. An adaptive threshold is proposed due to the illumination changes. The detected object is classified to evade it using a control deep neural network. A U-Net model is implemented to track the path trajectory. The experiment results were obtained from real data, proving the efficiency of the proposed algorithm. The adaptive threshold solves illumination variation issues for object detection. |
---|---|
ISSN: | 2158-107X 2156-5570 |
DOI: | 10.14569/IJACSA.2021.0120611 |