Mean inequalities for sector matrices involving positive linear maps
Let S α ( 0 ≤ α < π 2 ) stand for the set of all complex sector matrices and σ 1 , σ 2 be two operator means satisfying σ 1 ≤ σ 2 . Except some other assertions, it is also shown that for A , B ∈ S α , ℜ ( A σ 1 B ) ≤ sec 2 α ℜ ( A σ 2 B ) and ℜ ( A σ 2 B ) - 1 ≤ sec 2 α ℜ ( A σ 1 B ) - 1 . In ad...
Gespeichert in:
Veröffentlicht in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2022-07, Vol.26 (3), Article 44 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Positivity : an international journal devoted to the theory and applications of positivity in analysis |
container_volume | 26 |
creator | Malekinejad, Somayeh Khosravi, Maryam Sheikhhosseini, Alemeh |
description | Let
S
α
(
0
≤
α
<
π
2
)
stand for the set of all complex sector matrices and
σ
1
,
σ
2
be two operator means satisfying
σ
1
≤
σ
2
.
Except some other assertions, it is also shown that for
A
,
B
∈
S
α
,
ℜ
(
A
σ
1
B
)
≤
sec
2
α
ℜ
(
A
σ
2
B
)
and
ℜ
(
A
σ
2
B
)
-
1
≤
sec
2
α
ℜ
(
A
σ
1
B
)
-
1
.
In addition, if
σ
i
∗
≤
σ
i
,
for
i
=
1
,
2
and
Φ
is a unital positive linear map, then
Φ
ℜ
(
A
σ
1
B
)
-
1
≤
sec
2
α
ℜ
(
Φ
(
A
-
1
)
σ
2
Φ
(
B
-
1
)
)
. |
doi_str_mv | 10.1007/s11117-022-00913-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2654886557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654886557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-64287ebd0da3743122e2a85e0978de95f724d9b5ac49c3434fbe8000cf58c3643</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hkkmySo9RPqHjRc0iz2bJlu7tNtgX_vakreHMuMwzPMwMvIdcMbhmAukssl6KASAEM45SdkBmTCqlBzU7zzLWkDA2ek4uUNgBZEzAjD2_BdUXThd3etc3YhFTUfSxS8GNuWzfGxudd0x369tB062LoU8YOoWiz5I7IkC7JWe3aFK5--5x8Pj1-LF7o8v35dXG_pB6FGWkpUKuwqqByXAnOEAM6LQMYpatgZK1QVGYlnRfGc8FFvQoaAHwtteel4HNyM90dYr_bhzTaTb-PXX5psZRC61JKlSmcKB_7lGKo7RCbrYtfloE9pmWntGxOy_6kZVmW-CSlDHfrEP9O_2N9AymZbJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654886557</pqid></control><display><type>article</type><title>Mean inequalities for sector matrices involving positive linear maps</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Malekinejad, Somayeh ; Khosravi, Maryam ; Sheikhhosseini, Alemeh</creator><creatorcontrib>Malekinejad, Somayeh ; Khosravi, Maryam ; Sheikhhosseini, Alemeh</creatorcontrib><description>Let
S
α
(
0
≤
α
<
π
2
)
stand for the set of all complex sector matrices and
σ
1
,
σ
2
be two operator means satisfying
σ
1
≤
σ
2
.
Except some other assertions, it is also shown that for
A
,
B
∈
S
α
,
ℜ
(
A
σ
1
B
)
≤
sec
2
α
ℜ
(
A
σ
2
B
)
and
ℜ
(
A
σ
2
B
)
-
1
≤
sec
2
α
ℜ
(
A
σ
1
B
)
-
1
.
In addition, if
σ
i
∗
≤
σ
i
,
for
i
=
1
,
2
and
Φ
is a unital positive linear map, then
Φ
ℜ
(
A
σ
1
B
)
-
1
≤
sec
2
α
ℜ
(
Φ
(
A
-
1
)
σ
2
Φ
(
B
-
1
)
)
.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-022-00913-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Econometrics ; Fourier Analysis ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Matrices (mathematics) ; Operator Theory ; Potential Theory</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2022-07, Vol.26 (3), Article 44</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-64287ebd0da3743122e2a85e0978de95f724d9b5ac49c3434fbe8000cf58c3643</citedby><cites>FETCH-LOGICAL-c249t-64287ebd0da3743122e2a85e0978de95f724d9b5ac49c3434fbe8000cf58c3643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-022-00913-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-022-00913-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Malekinejad, Somayeh</creatorcontrib><creatorcontrib>Khosravi, Maryam</creatorcontrib><creatorcontrib>Sheikhhosseini, Alemeh</creatorcontrib><title>Mean inequalities for sector matrices involving positive linear maps</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>Let
S
α
(
0
≤
α
<
π
2
)
stand for the set of all complex sector matrices and
σ
1
,
σ
2
be two operator means satisfying
σ
1
≤
σ
2
.
Except some other assertions, it is also shown that for
A
,
B
∈
S
α
,
ℜ
(
A
σ
1
B
)
≤
sec
2
α
ℜ
(
A
σ
2
B
)
and
ℜ
(
A
σ
2
B
)
-
1
≤
sec
2
α
ℜ
(
A
σ
1
B
)
-
1
.
In addition, if
σ
i
∗
≤
σ
i
,
for
i
=
1
,
2
and
Φ
is a unital positive linear map, then
Φ
ℜ
(
A
σ
1
B
)
-
1
≤
sec
2
α
ℜ
(
Φ
(
A
-
1
)
σ
2
Φ
(
B
-
1
)
)
.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Econometrics</subject><subject>Fourier Analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrices (mathematics)</subject><subject>Operator Theory</subject><subject>Potential Theory</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hkkmySo9RPqHjRc0iz2bJlu7tNtgX_vakreHMuMwzPMwMvIdcMbhmAukssl6KASAEM45SdkBmTCqlBzU7zzLWkDA2ek4uUNgBZEzAjD2_BdUXThd3etc3YhFTUfSxS8GNuWzfGxudd0x369tB062LoU8YOoWiz5I7IkC7JWe3aFK5--5x8Pj1-LF7o8v35dXG_pB6FGWkpUKuwqqByXAnOEAM6LQMYpatgZK1QVGYlnRfGc8FFvQoaAHwtteel4HNyM90dYr_bhzTaTb-PXX5psZRC61JKlSmcKB_7lGKo7RCbrYtfloE9pmWntGxOy_6kZVmW-CSlDHfrEP9O_2N9AymZbJk</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Malekinejad, Somayeh</creator><creator>Khosravi, Maryam</creator><creator>Sheikhhosseini, Alemeh</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220701</creationdate><title>Mean inequalities for sector matrices involving positive linear maps</title><author>Malekinejad, Somayeh ; Khosravi, Maryam ; Sheikhhosseini, Alemeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-64287ebd0da3743122e2a85e0978de95f724d9b5ac49c3434fbe8000cf58c3643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Econometrics</topic><topic>Fourier Analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrices (mathematics)</topic><topic>Operator Theory</topic><topic>Potential Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malekinejad, Somayeh</creatorcontrib><creatorcontrib>Khosravi, Maryam</creatorcontrib><creatorcontrib>Sheikhhosseini, Alemeh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malekinejad, Somayeh</au><au>Khosravi, Maryam</au><au>Sheikhhosseini, Alemeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean inequalities for sector matrices involving positive linear maps</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>26</volume><issue>3</issue><artnum>44</artnum><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>Let
S
α
(
0
≤
α
<
π
2
)
stand for the set of all complex sector matrices and
σ
1
,
σ
2
be two operator means satisfying
σ
1
≤
σ
2
.
Except some other assertions, it is also shown that for
A
,
B
∈
S
α
,
ℜ
(
A
σ
1
B
)
≤
sec
2
α
ℜ
(
A
σ
2
B
)
and
ℜ
(
A
σ
2
B
)
-
1
≤
sec
2
α
ℜ
(
A
σ
1
B
)
-
1
.
In addition, if
σ
i
∗
≤
σ
i
,
for
i
=
1
,
2
and
Φ
is a unital positive linear map, then
Φ
ℜ
(
A
σ
1
B
)
-
1
≤
sec
2
α
ℜ
(
Φ
(
A
-
1
)
σ
2
Φ
(
B
-
1
)
)
.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-022-00913-1</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-1292 |
ispartof | Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2022-07, Vol.26 (3), Article 44 |
issn | 1385-1292 1572-9281 |
language | eng |
recordid | cdi_proquest_journals_2654886557 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Calculus of Variations and Optimal Control Optimization Econometrics Fourier Analysis Mathematical analysis Mathematics Mathematics and Statistics Matrices (mathematics) Operator Theory Potential Theory |
title | Mean inequalities for sector matrices involving positive linear maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean%20inequalities%20for%20sector%20matrices%20involving%20positive%20linear%20maps&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Malekinejad,%20Somayeh&rft.date=2022-07-01&rft.volume=26&rft.issue=3&rft.artnum=44&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-022-00913-1&rft_dat=%3Cproquest_cross%3E2654886557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654886557&rft_id=info:pmid/&rfr_iscdi=true |