Mean inequalities for sector matrices involving positive linear maps

Let S α ( 0 ≤ α < π 2 ) stand for the set of all complex sector matrices and σ 1 , σ 2 be two operator means satisfying σ 1 ≤ σ 2 . Except some other assertions, it is also shown that for A , B ∈ S α , ℜ ( A σ 1 B ) ≤ sec 2 α ℜ ( A σ 2 B ) and ℜ ( A σ 2 B ) - 1 ≤ sec 2 α ℜ ( A σ 1 B ) - 1 . In ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Positivity : an international journal devoted to the theory and applications of positivity in analysis 2022-07, Vol.26 (3), Article 44
Hauptverfasser: Malekinejad, Somayeh, Khosravi, Maryam, Sheikhhosseini, Alemeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Positivity : an international journal devoted to the theory and applications of positivity in analysis
container_volume 26
creator Malekinejad, Somayeh
Khosravi, Maryam
Sheikhhosseini, Alemeh
description Let S α ( 0 ≤ α < π 2 ) stand for the set of all complex sector matrices and σ 1 , σ 2 be two operator means satisfying σ 1 ≤ σ 2 . Except some other assertions, it is also shown that for A , B ∈ S α , ℜ ( A σ 1 B ) ≤ sec 2 α ℜ ( A σ 2 B ) and ℜ ( A σ 2 B ) - 1 ≤ sec 2 α ℜ ( A σ 1 B ) - 1 . In addition, if σ i ∗ ≤ σ i , for i = 1 , 2 and Φ is a unital positive linear map, then Φ ℜ ( A σ 1 B ) - 1 ≤ sec 2 α ℜ ( Φ ( A - 1 ) σ 2 Φ ( B - 1 ) ) .
doi_str_mv 10.1007/s11117-022-00913-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2654886557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654886557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-64287ebd0da3743122e2a85e0978de95f724d9b5ac49c3434fbe8000cf58c3643</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hkkmySo9RPqHjRc0iz2bJlu7tNtgX_vakreHMuMwzPMwMvIdcMbhmAukssl6KASAEM45SdkBmTCqlBzU7zzLWkDA2ek4uUNgBZEzAjD2_BdUXThd3etc3YhFTUfSxS8GNuWzfGxudd0x369tB062LoU8YOoWiz5I7IkC7JWe3aFK5--5x8Pj1-LF7o8v35dXG_pB6FGWkpUKuwqqByXAnOEAM6LQMYpatgZK1QVGYlnRfGc8FFvQoaAHwtteel4HNyM90dYr_bhzTaTb-PXX5psZRC61JKlSmcKB_7lGKo7RCbrYtfloE9pmWntGxOy_6kZVmW-CSlDHfrEP9O_2N9AymZbJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654886557</pqid></control><display><type>article</type><title>Mean inequalities for sector matrices involving positive linear maps</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Malekinejad, Somayeh ; Khosravi, Maryam ; Sheikhhosseini, Alemeh</creator><creatorcontrib>Malekinejad, Somayeh ; Khosravi, Maryam ; Sheikhhosseini, Alemeh</creatorcontrib><description>Let S α ( 0 ≤ α &lt; π 2 ) stand for the set of all complex sector matrices and σ 1 , σ 2 be two operator means satisfying σ 1 ≤ σ 2 . Except some other assertions, it is also shown that for A , B ∈ S α , ℜ ( A σ 1 B ) ≤ sec 2 α ℜ ( A σ 2 B ) and ℜ ( A σ 2 B ) - 1 ≤ sec 2 α ℜ ( A σ 1 B ) - 1 . In addition, if σ i ∗ ≤ σ i , for i = 1 , 2 and Φ is a unital positive linear map, then Φ ℜ ( A σ 1 B ) - 1 ≤ sec 2 α ℜ ( Φ ( A - 1 ) σ 2 Φ ( B - 1 ) ) .</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-022-00913-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Econometrics ; Fourier Analysis ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Matrices (mathematics) ; Operator Theory ; Potential Theory</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2022-07, Vol.26 (3), Article 44</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-64287ebd0da3743122e2a85e0978de95f724d9b5ac49c3434fbe8000cf58c3643</citedby><cites>FETCH-LOGICAL-c249t-64287ebd0da3743122e2a85e0978de95f724d9b5ac49c3434fbe8000cf58c3643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-022-00913-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-022-00913-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Malekinejad, Somayeh</creatorcontrib><creatorcontrib>Khosravi, Maryam</creatorcontrib><creatorcontrib>Sheikhhosseini, Alemeh</creatorcontrib><title>Mean inequalities for sector matrices involving positive linear maps</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>Let S α ( 0 ≤ α &lt; π 2 ) stand for the set of all complex sector matrices and σ 1 , σ 2 be two operator means satisfying σ 1 ≤ σ 2 . Except some other assertions, it is also shown that for A , B ∈ S α , ℜ ( A σ 1 B ) ≤ sec 2 α ℜ ( A σ 2 B ) and ℜ ( A σ 2 B ) - 1 ≤ sec 2 α ℜ ( A σ 1 B ) - 1 . In addition, if σ i ∗ ≤ σ i , for i = 1 , 2 and Φ is a unital positive linear map, then Φ ℜ ( A σ 1 B ) - 1 ≤ sec 2 α ℜ ( Φ ( A - 1 ) σ 2 Φ ( B - 1 ) ) .</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Econometrics</subject><subject>Fourier Analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrices (mathematics)</subject><subject>Operator Theory</subject><subject>Potential Theory</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hkkmySo9RPqHjRc0iz2bJlu7tNtgX_vakreHMuMwzPMwMvIdcMbhmAukssl6KASAEM45SdkBmTCqlBzU7zzLWkDA2ek4uUNgBZEzAjD2_BdUXThd3etc3YhFTUfSxS8GNuWzfGxudd0x369tB062LoU8YOoWiz5I7IkC7JWe3aFK5--5x8Pj1-LF7o8v35dXG_pB6FGWkpUKuwqqByXAnOEAM6LQMYpatgZK1QVGYlnRfGc8FFvQoaAHwtteel4HNyM90dYr_bhzTaTb-PXX5psZRC61JKlSmcKB_7lGKo7RCbrYtfloE9pmWntGxOy_6kZVmW-CSlDHfrEP9O_2N9AymZbJk</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Malekinejad, Somayeh</creator><creator>Khosravi, Maryam</creator><creator>Sheikhhosseini, Alemeh</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220701</creationdate><title>Mean inequalities for sector matrices involving positive linear maps</title><author>Malekinejad, Somayeh ; Khosravi, Maryam ; Sheikhhosseini, Alemeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-64287ebd0da3743122e2a85e0978de95f724d9b5ac49c3434fbe8000cf58c3643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Econometrics</topic><topic>Fourier Analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrices (mathematics)</topic><topic>Operator Theory</topic><topic>Potential Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malekinejad, Somayeh</creatorcontrib><creatorcontrib>Khosravi, Maryam</creatorcontrib><creatorcontrib>Sheikhhosseini, Alemeh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malekinejad, Somayeh</au><au>Khosravi, Maryam</au><au>Sheikhhosseini, Alemeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean inequalities for sector matrices involving positive linear maps</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>26</volume><issue>3</issue><artnum>44</artnum><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>Let S α ( 0 ≤ α &lt; π 2 ) stand for the set of all complex sector matrices and σ 1 , σ 2 be two operator means satisfying σ 1 ≤ σ 2 . Except some other assertions, it is also shown that for A , B ∈ S α , ℜ ( A σ 1 B ) ≤ sec 2 α ℜ ( A σ 2 B ) and ℜ ( A σ 2 B ) - 1 ≤ sec 2 α ℜ ( A σ 1 B ) - 1 . In addition, if σ i ∗ ≤ σ i , for i = 1 , 2 and Φ is a unital positive linear map, then Φ ℜ ( A σ 1 B ) - 1 ≤ sec 2 α ℜ ( Φ ( A - 1 ) σ 2 Φ ( B - 1 ) ) .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-022-00913-1</doi></addata></record>
fulltext fulltext
identifier ISSN: 1385-1292
ispartof Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2022-07, Vol.26 (3), Article 44
issn 1385-1292
1572-9281
language eng
recordid cdi_proquest_journals_2654886557
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Calculus of Variations and Optimal Control
Optimization
Econometrics
Fourier Analysis
Mathematical analysis
Mathematics
Mathematics and Statistics
Matrices (mathematics)
Operator Theory
Potential Theory
title Mean inequalities for sector matrices involving positive linear maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean%20inequalities%20for%20sector%20matrices%20involving%20positive%20linear%20maps&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Malekinejad,%20Somayeh&rft.date=2022-07-01&rft.volume=26&rft.issue=3&rft.artnum=44&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-022-00913-1&rft_dat=%3Cproquest_cross%3E2654886557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654886557&rft_id=info:pmid/&rfr_iscdi=true