Mean inequalities for sector matrices involving positive linear maps
Let S α ( 0 ≤ α < π 2 ) stand for the set of all complex sector matrices and σ 1 , σ 2 be two operator means satisfying σ 1 ≤ σ 2 . Except some other assertions, it is also shown that for A , B ∈ S α , ℜ ( A σ 1 B ) ≤ sec 2 α ℜ ( A σ 2 B ) and ℜ ( A σ 2 B ) - 1 ≤ sec 2 α ℜ ( A σ 1 B ) - 1 . In ad...
Gespeichert in:
Veröffentlicht in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2022-07, Vol.26 (3), Article 44 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
S
α
(
0
≤
α
<
π
2
)
stand for the set of all complex sector matrices and
σ
1
,
σ
2
be two operator means satisfying
σ
1
≤
σ
2
.
Except some other assertions, it is also shown that for
A
,
B
∈
S
α
,
ℜ
(
A
σ
1
B
)
≤
sec
2
α
ℜ
(
A
σ
2
B
)
and
ℜ
(
A
σ
2
B
)
-
1
≤
sec
2
α
ℜ
(
A
σ
1
B
)
-
1
.
In addition, if
σ
i
∗
≤
σ
i
,
for
i
=
1
,
2
and
Φ
is a unital positive linear map, then
Φ
ℜ
(
A
σ
1
B
)
-
1
≤
sec
2
α
ℜ
(
Φ
(
A
-
1
)
σ
2
Φ
(
B
-
1
)
)
. |
---|---|
ISSN: | 1385-1292 1572-9281 |
DOI: | 10.1007/s11117-022-00913-1 |