A Power Transformer Fault Prediction Method through Temporal Convolutional Network on Dissolved Gas Chromatography Data

The power transformer is an example of the key equipment of power grid, and its potential faults limit the system availability and the enterprise security. However, fault prediction for power transformers has its limitations in low data quality, binary classification effect, and small sample learnin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2022-04, Vol.2022, p.1-11
Hauptverfasser: Xing, Mengda, Ding, Weilong, Li, Han, Zhang, Tianpu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The power transformer is an example of the key equipment of power grid, and its potential faults limit the system availability and the enterprise security. However, fault prediction for power transformers has its limitations in low data quality, binary classification effect, and small sample learning. We propose a method for fault prediction for power transformers based on dissolved gas chromatography data: after data preprocessing of defective raw data, fault classification is performed based on the predictive regression results. Here, Mish-SN Temporal Convolutional Network (MSTCN) is introduced to improve the accuracy during the regression step. Several experiments are conducted using data set from China State Grid. The discussion of the results of experiments is provided.
ISSN:1939-0114
1939-0122
DOI:10.1155/2022/5357412