Deformation induced grain boundary segregation and thermal stability of nanolaminated Al-Zn-Mg-Cu alloy
•NL structure was induced in Al-Zn-Mg-Cu alloy by SMGT at room temperature.•Deformation can trigger the segregation of Zn and Cu solutes at GBs in NL structure.•NL structure exhibits a hardness of 2.86 GPa.•NL shows good thermal stability due to GB segregation and pinning of nanoparticles. In this w...
Gespeichert in:
Veröffentlicht in: | Materials letters 2022-05, Vol.315, p.131930, Article 131930 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •NL structure was induced in Al-Zn-Mg-Cu alloy by SMGT at room temperature.•Deformation can trigger the segregation of Zn and Cu solutes at GBs in NL structure.•NL structure exhibits a hardness of 2.86 GPa.•NL shows good thermal stability due to GB segregation and pinning of nanoparticles.
In this work, nanolaminated (NL) structure with an average lamellae thickness of 27 nm and a high hardness of 2.86 GPa has been fabricated in a solution treated Al-Zn-Mg-Cu alloy by surface mechanical grinding treatment (SMGT) at room temperature, featuring strong Zn and Cu segregation to grain boundaries (GBs). The NL structure shows a good thermal stability caused by GB segregation and the pinning effect of the numerous nanoparticles at the GBs. |
---|---|
ISSN: | 0167-577X 1873-4979 |
DOI: | 10.1016/j.matlet.2022.131930 |