Explanations for Unusual Seasonal Variations in Chang'E-2 Microwave Radiometer Datasets of Lunar Double-Shaded Permanently Shadowed Regions

Near-surface temperatures of permanently shadowed regions (PSRs) on the Moon provide fundamental information for water ice exploration. Seasonal temperature variations of PSRs are found in both Chang'E-2 microwave radiometer data and Diviner Lunar radiometer observations. Furthermore, unusual m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-14
Hauptverfasser: Zheng, Wenchao, Hu, Guoping, Zhang, Dan, Zheng, Yongchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Near-surface temperatures of permanently shadowed regions (PSRs) on the Moon provide fundamental information for water ice exploration. Seasonal temperature variations of PSRs are found in both Chang'E-2 microwave radiometer data and Diviner Lunar radiometer observations. Furthermore, unusual microwave brightness temperature variations between February 2011 and May 2011 of double-shaded PSRs are shown in the Chang'E-2 observational data, i.e., that the minimum microwave brightness temperature occurs before the time when the infrared brightness temperature reaches the minimum in double-shaded PSRs. To interpret this phenomenon, the 1-D thermal model and the microwave radiation transfer model are used. In the thermal model, the reradiation energy from the illuminated area is estimated by effective solar irradiance, which is an analytic solution for the radiative equilibrium temperature in the shadowed area of a spherical bowl-shaped crater. In the simulation, an assumed internal 0.4 W/m 2 heat flow beneath the lunar surface made a plausible fit to the unusual variations during some lunations. However, this is a huge value compared with the well-known heat flow value of about 0.018 W/m 2 . Furthermore, it is difficult to obtain this extra heat energy by lateral conduction below the surface in a large impact crater due to the small thermal conductivity of the lunar regolith. Finally, the unusual microwave brightness temperature (TB) changes are concluded to be caused by a calibration problem after excluding other possible reasons. In addition, a statistical correction method is applied to revise the problematic TB data to obtain the proper variation trend of the brightness temperature.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2022.3165822