Refined Cramér-type moderate deviation theorems for general self-normalized sums with applications to dependent random variables and winsorized mean
Let {(Xi, Yi)}ni=1 be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramér-type moderate deviation theorem for the general self-normalized sum ∑ni=1 Xi/(∑ni=1 Yi2)1/2, which unifies and extends the classical Cramér (Actual. Sci. Ind. 736 (1938) 5–23) theor...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 2022-04, Vol.50 (2), p.673 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 673 |
container_title | The Annals of statistics |
container_volume | 50 |
creator | Gao, Lan Shao, Qi-Man Shi, Jiasheng |
description | Let {(Xi, Yi)}ni=1 be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramér-type moderate deviation theorem for the general self-normalized sum ∑ni=1 Xi/(∑ni=1 Yi2)1/2, which unifies and extends the classical Cramér (Actual. Sci. Ind. 736 (1938) 5–23) theorem and the self-normalized Cramér-type moderate deviation theorems by Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) as well as the further refined version by Wang (J. Theoret. Probab. 24 (2011) 307–329). The advantage of our result is evidenced through successful applications to weakly dependent random variables and self-normalized winsorized mean. Specifically, by applying our new framework on general self-normalized sum, we significantly improve Cramér-type moderate deviation theorems for one-dependent random variables, geometrically β-mixing random variables and causal processes under geometrical moment contraction. As an additional application, we also derive the Cramér-type moderate deviation theorems for self-normalized winsorized mean. |
doi_str_mv | 10.1214/21-AOS2122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2653334520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2653334520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-7835455744eab17060ae9b6c823cf2ce8cbda799143b9badce218eb13dd731fa3</originalsourceid><addsrcrecordid>eNotkNtKAzEQhoMoWKs3PkHAOyGa054uS_EEhYKH6yW7mbUpu8mapEp9Dx_C5_DFjLZXwzDf_w38CJ0zesU4k9eckdnyiTPOD9CEs7wkZZXnh2hCaUVJJnJ5jE5CWFNKs0qKCfp6hM5Y0Hju1fDz7UncjoAHp8GrCFjDu1HROIvjCpyHIeDOefwKNt17HKDviHV-UL35TJKwScCHiSusxrE37X804OiSaASrwUbsldVuwO_KG9X0EHDaU8YG5_8dAyh7io461Qc4288perm9eZ7fk8Xy7mE-W5CWszKSohSZzLJCSlANK2hOFVRN3pZctB1voWwbrYqqYlI0VaN0CykGDRNaF4J1SkzRxc47eve2gRDrtdt4m17WPM-EEDLjNFGXO6r1LgQPXT16Myi_rRmt_2qvOav3tYtfUAB5qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653334520</pqid></control><display><type>article</type><title>Refined Cramér-type moderate deviation theorems for general self-normalized sums with applications to dependent random variables and winsorized mean</title><source>Project Euclid Complete</source><creator>Gao, Lan ; Shao, Qi-Man ; Shi, Jiasheng</creator><creatorcontrib>Gao, Lan ; Shao, Qi-Man ; Shi, Jiasheng</creatorcontrib><description>Let {(Xi, Yi)}ni=1 be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramér-type moderate deviation theorem for the general self-normalized sum ∑ni=1 Xi/(∑ni=1 Yi2)1/2, which unifies and extends the classical Cramér (Actual. Sci. Ind. 736 (1938) 5–23) theorem and the self-normalized Cramér-type moderate deviation theorems by Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) as well as the further refined version by Wang (J. Theoret. Probab. 24 (2011) 307–329). The advantage of our result is evidenced through successful applications to weakly dependent random variables and self-normalized winsorized mean. Specifically, by applying our new framework on general self-normalized sum, we significantly improve Cramér-type moderate deviation theorems for one-dependent random variables, geometrically β-mixing random variables and causal processes under geometrical moment contraction. As an additional application, we also derive the Cramér-type moderate deviation theorems for self-normalized winsorized mean.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/21-AOS2122</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Bivariate analysis ; Dependent variables ; Deviation ; Geometry ; Mean ; Random variables ; Theorems</subject><ispartof>The Annals of statistics, 2022-04, Vol.50 (2), p.673</ispartof><rights>Copyright Institute of Mathematical Statistics Apr 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-7835455744eab17060ae9b6c823cf2ce8cbda799143b9badce218eb13dd731fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gao, Lan</creatorcontrib><creatorcontrib>Shao, Qi-Man</creatorcontrib><creatorcontrib>Shi, Jiasheng</creatorcontrib><title>Refined Cramér-type moderate deviation theorems for general self-normalized sums with applications to dependent random variables and winsorized mean</title><title>The Annals of statistics</title><description>Let {(Xi, Yi)}ni=1 be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramér-type moderate deviation theorem for the general self-normalized sum ∑ni=1 Xi/(∑ni=1 Yi2)1/2, which unifies and extends the classical Cramér (Actual. Sci. Ind. 736 (1938) 5–23) theorem and the self-normalized Cramér-type moderate deviation theorems by Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) as well as the further refined version by Wang (J. Theoret. Probab. 24 (2011) 307–329). The advantage of our result is evidenced through successful applications to weakly dependent random variables and self-normalized winsorized mean. Specifically, by applying our new framework on general self-normalized sum, we significantly improve Cramér-type moderate deviation theorems for one-dependent random variables, geometrically β-mixing random variables and causal processes under geometrical moment contraction. As an additional application, we also derive the Cramér-type moderate deviation theorems for self-normalized winsorized mean.</description><subject>Bivariate analysis</subject><subject>Dependent variables</subject><subject>Deviation</subject><subject>Geometry</subject><subject>Mean</subject><subject>Random variables</subject><subject>Theorems</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkNtKAzEQhoMoWKs3PkHAOyGa054uS_EEhYKH6yW7mbUpu8mapEp9Dx_C5_DFjLZXwzDf_w38CJ0zesU4k9eckdnyiTPOD9CEs7wkZZXnh2hCaUVJJnJ5jE5CWFNKs0qKCfp6hM5Y0Hju1fDz7UncjoAHp8GrCFjDu1HROIvjCpyHIeDOefwKNt17HKDviHV-UL35TJKwScCHiSusxrE37X804OiSaASrwUbsldVuwO_KG9X0EHDaU8YG5_8dAyh7io461Qc4288perm9eZ7fk8Xy7mE-W5CWszKSohSZzLJCSlANK2hOFVRN3pZctB1voWwbrYqqYlI0VaN0CykGDRNaF4J1SkzRxc47eve2gRDrtdt4m17WPM-EEDLjNFGXO6r1LgQPXT16Myi_rRmt_2qvOav3tYtfUAB5qw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Gao, Lan</creator><creator>Shao, Qi-Man</creator><creator>Shi, Jiasheng</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20220401</creationdate><title>Refined Cramér-type moderate deviation theorems for general self-normalized sums with applications to dependent random variables and winsorized mean</title><author>Gao, Lan ; Shao, Qi-Man ; Shi, Jiasheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-7835455744eab17060ae9b6c823cf2ce8cbda799143b9badce218eb13dd731fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bivariate analysis</topic><topic>Dependent variables</topic><topic>Deviation</topic><topic>Geometry</topic><topic>Mean</topic><topic>Random variables</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Lan</creatorcontrib><creatorcontrib>Shao, Qi-Man</creatorcontrib><creatorcontrib>Shi, Jiasheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Lan</au><au>Shao, Qi-Man</au><au>Shi, Jiasheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refined Cramér-type moderate deviation theorems for general self-normalized sums with applications to dependent random variables and winsorized mean</atitle><jtitle>The Annals of statistics</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>50</volume><issue>2</issue><spage>673</spage><pages>673-</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>Let {(Xi, Yi)}ni=1 be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramér-type moderate deviation theorem for the general self-normalized sum ∑ni=1 Xi/(∑ni=1 Yi2)1/2, which unifies and extends the classical Cramér (Actual. Sci. Ind. 736 (1938) 5–23) theorem and the self-normalized Cramér-type moderate deviation theorems by Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) as well as the further refined version by Wang (J. Theoret. Probab. 24 (2011) 307–329). The advantage of our result is evidenced through successful applications to weakly dependent random variables and self-normalized winsorized mean. Specifically, by applying our new framework on general self-normalized sum, we significantly improve Cramér-type moderate deviation theorems for one-dependent random variables, geometrically β-mixing random variables and causal processes under geometrical moment contraction. As an additional application, we also derive the Cramér-type moderate deviation theorems for self-normalized winsorized mean.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/21-AOS2122</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 2022-04, Vol.50 (2), p.673 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_proquest_journals_2653334520 |
source | Project Euclid Complete |
subjects | Bivariate analysis Dependent variables Deviation Geometry Mean Random variables Theorems |
title | Refined Cramér-type moderate deviation theorems for general self-normalized sums with applications to dependent random variables and winsorized mean |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refined%20Cram%C3%A9r-type%20moderate%20deviation%20theorems%20for%20general%20self-normalized%20sums%20with%20applications%20to%20dependent%20random%20variables%20and%20winsorized%20mean&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Gao,%20Lan&rft.date=2022-04-01&rft.volume=50&rft.issue=2&rft.spage=673&rft.pages=673-&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/21-AOS2122&rft_dat=%3Cproquest_cross%3E2653334520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653334520&rft_id=info:pmid/&rfr_iscdi=true |