Refined Cramér-type moderate deviation theorems for general self-normalized sums with applications to dependent random variables and winsorized mean

Let {(Xi, Yi)}ni=1 be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramér-type moderate deviation theorem for the general self-normalized sum ∑ni=1 Xi/(∑ni=1 Yi2)1/2, which unifies and extends the classical Cramér (Actual. Sci. Ind. 736 (1938) 5–23) theor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2022-04, Vol.50 (2), p.673
Hauptverfasser: Gao, Lan, Shao, Qi-Man, Shi, Jiasheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 673
container_title The Annals of statistics
container_volume 50
creator Gao, Lan
Shao, Qi-Man
Shi, Jiasheng
description Let {(Xi, Yi)}ni=1 be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramér-type moderate deviation theorem for the general self-normalized sum ∑ni=1 Xi/(∑ni=1 Yi2)1/2, which unifies and extends the classical Cramér (Actual. Sci. Ind. 736 (1938) 5–23) theorem and the self-normalized Cramér-type moderate deviation theorems by Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) as well as the further refined version by Wang (J. Theoret. Probab. 24 (2011) 307–329). The advantage of our result is evidenced through successful applications to weakly dependent random variables and self-normalized winsorized mean. Specifically, by applying our new framework on general self-normalized sum, we significantly improve Cramér-type moderate deviation theorems for one-dependent random variables, geometrically β-mixing random variables and causal processes under geometrical moment contraction. As an additional application, we also derive the Cramér-type moderate deviation theorems for self-normalized winsorized mean.
doi_str_mv 10.1214/21-AOS2122
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2653334520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2653334520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-7835455744eab17060ae9b6c823cf2ce8cbda799143b9badce218eb13dd731fa3</originalsourceid><addsrcrecordid>eNotkNtKAzEQhoMoWKs3PkHAOyGa054uS_EEhYKH6yW7mbUpu8mapEp9Dx_C5_DFjLZXwzDf_w38CJ0zesU4k9eckdnyiTPOD9CEs7wkZZXnh2hCaUVJJnJ5jE5CWFNKs0qKCfp6hM5Y0Hju1fDz7UncjoAHp8GrCFjDu1HROIvjCpyHIeDOefwKNt17HKDviHV-UL35TJKwScCHiSusxrE37X804OiSaASrwUbsldVuwO_KG9X0EHDaU8YG5_8dAyh7io461Qc4288perm9eZ7fk8Xy7mE-W5CWszKSohSZzLJCSlANK2hOFVRN3pZctB1voWwbrYqqYlI0VaN0CykGDRNaF4J1SkzRxc47eve2gRDrtdt4m17WPM-EEDLjNFGXO6r1LgQPXT16Myi_rRmt_2qvOav3tYtfUAB5qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653334520</pqid></control><display><type>article</type><title>Refined Cramér-type moderate deviation theorems for general self-normalized sums with applications to dependent random variables and winsorized mean</title><source>Project Euclid Complete</source><creator>Gao, Lan ; Shao, Qi-Man ; Shi, Jiasheng</creator><creatorcontrib>Gao, Lan ; Shao, Qi-Man ; Shi, Jiasheng</creatorcontrib><description>Let {(Xi, Yi)}ni=1 be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramér-type moderate deviation theorem for the general self-normalized sum ∑ni=1 Xi/(∑ni=1 Yi2)1/2, which unifies and extends the classical Cramér (Actual. Sci. Ind. 736 (1938) 5–23) theorem and the self-normalized Cramér-type moderate deviation theorems by Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) as well as the further refined version by Wang (J. Theoret. Probab. 24 (2011) 307–329). The advantage of our result is evidenced through successful applications to weakly dependent random variables and self-normalized winsorized mean. Specifically, by applying our new framework on general self-normalized sum, we significantly improve Cramér-type moderate deviation theorems for one-dependent random variables, geometrically β-mixing random variables and causal processes under geometrical moment contraction. As an additional application, we also derive the Cramér-type moderate deviation theorems for self-normalized winsorized mean.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/21-AOS2122</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Bivariate analysis ; Dependent variables ; Deviation ; Geometry ; Mean ; Random variables ; Theorems</subject><ispartof>The Annals of statistics, 2022-04, Vol.50 (2), p.673</ispartof><rights>Copyright Institute of Mathematical Statistics Apr 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-7835455744eab17060ae9b6c823cf2ce8cbda799143b9badce218eb13dd731fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gao, Lan</creatorcontrib><creatorcontrib>Shao, Qi-Man</creatorcontrib><creatorcontrib>Shi, Jiasheng</creatorcontrib><title>Refined Cramér-type moderate deviation theorems for general self-normalized sums with applications to dependent random variables and winsorized mean</title><title>The Annals of statistics</title><description>Let {(Xi, Yi)}ni=1 be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramér-type moderate deviation theorem for the general self-normalized sum ∑ni=1 Xi/(∑ni=1 Yi2)1/2, which unifies and extends the classical Cramér (Actual. Sci. Ind. 736 (1938) 5–23) theorem and the self-normalized Cramér-type moderate deviation theorems by Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) as well as the further refined version by Wang (J. Theoret. Probab. 24 (2011) 307–329). The advantage of our result is evidenced through successful applications to weakly dependent random variables and self-normalized winsorized mean. Specifically, by applying our new framework on general self-normalized sum, we significantly improve Cramér-type moderate deviation theorems for one-dependent random variables, geometrically β-mixing random variables and causal processes under geometrical moment contraction. As an additional application, we also derive the Cramér-type moderate deviation theorems for self-normalized winsorized mean.</description><subject>Bivariate analysis</subject><subject>Dependent variables</subject><subject>Deviation</subject><subject>Geometry</subject><subject>Mean</subject><subject>Random variables</subject><subject>Theorems</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkNtKAzEQhoMoWKs3PkHAOyGa054uS_EEhYKH6yW7mbUpu8mapEp9Dx_C5_DFjLZXwzDf_w38CJ0zesU4k9eckdnyiTPOD9CEs7wkZZXnh2hCaUVJJnJ5jE5CWFNKs0qKCfp6hM5Y0Hju1fDz7UncjoAHp8GrCFjDu1HROIvjCpyHIeDOefwKNt17HKDviHV-UL35TJKwScCHiSusxrE37X804OiSaASrwUbsldVuwO_KG9X0EHDaU8YG5_8dAyh7io461Qc4288perm9eZ7fk8Xy7mE-W5CWszKSohSZzLJCSlANK2hOFVRN3pZctB1voWwbrYqqYlI0VaN0CykGDRNaF4J1SkzRxc47eve2gRDrtdt4m17WPM-EEDLjNFGXO6r1LgQPXT16Myi_rRmt_2qvOav3tYtfUAB5qw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Gao, Lan</creator><creator>Shao, Qi-Man</creator><creator>Shi, Jiasheng</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20220401</creationdate><title>Refined Cramér-type moderate deviation theorems for general self-normalized sums with applications to dependent random variables and winsorized mean</title><author>Gao, Lan ; Shao, Qi-Man ; Shi, Jiasheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-7835455744eab17060ae9b6c823cf2ce8cbda799143b9badce218eb13dd731fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bivariate analysis</topic><topic>Dependent variables</topic><topic>Deviation</topic><topic>Geometry</topic><topic>Mean</topic><topic>Random variables</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Lan</creatorcontrib><creatorcontrib>Shao, Qi-Man</creatorcontrib><creatorcontrib>Shi, Jiasheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Lan</au><au>Shao, Qi-Man</au><au>Shi, Jiasheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refined Cramér-type moderate deviation theorems for general self-normalized sums with applications to dependent random variables and winsorized mean</atitle><jtitle>The Annals of statistics</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>50</volume><issue>2</issue><spage>673</spage><pages>673-</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>Let {(Xi, Yi)}ni=1 be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramér-type moderate deviation theorem for the general self-normalized sum ∑ni=1 Xi/(∑ni=1 Yi2)1/2, which unifies and extends the classical Cramér (Actual. Sci. Ind. 736 (1938) 5–23) theorem and the self-normalized Cramér-type moderate deviation theorems by Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) as well as the further refined version by Wang (J. Theoret. Probab. 24 (2011) 307–329). The advantage of our result is evidenced through successful applications to weakly dependent random variables and self-normalized winsorized mean. Specifically, by applying our new framework on general self-normalized sum, we significantly improve Cramér-type moderate deviation theorems for one-dependent random variables, geometrically β-mixing random variables and causal processes under geometrical moment contraction. As an additional application, we also derive the Cramér-type moderate deviation theorems for self-normalized winsorized mean.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/21-AOS2122</doi></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2022-04, Vol.50 (2), p.673
issn 0090-5364
2168-8966
language eng
recordid cdi_proquest_journals_2653334520
source Project Euclid Complete
subjects Bivariate analysis
Dependent variables
Deviation
Geometry
Mean
Random variables
Theorems
title Refined Cramér-type moderate deviation theorems for general self-normalized sums with applications to dependent random variables and winsorized mean
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refined%20Cram%C3%A9r-type%20moderate%20deviation%20theorems%20for%20general%20self-normalized%20sums%20with%20applications%20to%20dependent%20random%20variables%20and%20winsorized%20mean&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Gao,%20Lan&rft.date=2022-04-01&rft.volume=50&rft.issue=2&rft.spage=673&rft.pages=673-&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/21-AOS2122&rft_dat=%3Cproquest_cross%3E2653334520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653334520&rft_id=info:pmid/&rfr_iscdi=true