Refined Cramér-type moderate deviation theorems for general self-normalized sums with applications to dependent random variables and winsorized mean

Let {(Xi, Yi)}ni=1 be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramér-type moderate deviation theorem for the general self-normalized sum ∑ni=1 Xi/(∑ni=1 Yi2)1/2, which unifies and extends the classical Cramér (Actual. Sci. Ind. 736 (1938) 5–23) theor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2022-04, Vol.50 (2), p.673
Hauptverfasser: Gao, Lan, Shao, Qi-Man, Shi, Jiasheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let {(Xi, Yi)}ni=1 be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramér-type moderate deviation theorem for the general self-normalized sum ∑ni=1 Xi/(∑ni=1 Yi2)1/2, which unifies and extends the classical Cramér (Actual. Sci. Ind. 736 (1938) 5–23) theorem and the self-normalized Cramér-type moderate deviation theorems by Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) as well as the further refined version by Wang (J. Theoret. Probab. 24 (2011) 307–329). The advantage of our result is evidenced through successful applications to weakly dependent random variables and self-normalized winsorized mean. Specifically, by applying our new framework on general self-normalized sum, we significantly improve Cramér-type moderate deviation theorems for one-dependent random variables, geometrically β-mixing random variables and causal processes under geometrical moment contraction. As an additional application, we also derive the Cramér-type moderate deviation theorems for self-normalized winsorized mean.
ISSN:0090-5364
2168-8966
DOI:10.1214/21-AOS2122