Assessment of the level of activity of advective transport through fractures and faults in marine deposits by comparison between stable isotope compositions of fracture and pore waters

Assessment of the level of activity of advective transport through faults and fractures is essential for guiding the geological disposal of radioactive waste. In this study, the advective flow (active, inactive) of meteoric water through fractures is assessed by comparing stable isotopes (δD and δ 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrogeology journal 2022-05, Vol.30 (3), p.813-827
Hauptverfasser: Mochizuki, Akihito, Ishii, Eiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assessment of the level of activity of advective transport through faults and fractures is essential for guiding the geological disposal of radioactive waste. In this study, the advective flow (active, inactive) of meteoric water through fractures is assessed by comparing stable isotopes (δD and δ 18 O) between fracture and pore waters obtained from four boreholes in marine deposits in the Horonobe area, Japan. At 27–83-m depth in one borehole and 28–250 m in another, the isotopic compositions of pore and fracture water reflect mixing with meteoric water, with stronger meteoric-water signatures being observed in the fracture water than in pore water of the rock matrix. At greater depths in these boreholes and at all sampling depths in the other two studied boreholes, the isotopic compositions of fracture and pore waters are comparable. These results suggest that the advective flow of meteoric water is active at shallow depths where fossil seawater is highly diluted in the two boreholes. This interpretation is compatible with the occurrence of present or paleo meteoric waters and tritium, whereby present meteoric water and tritium are limited to those depths in the two boreholes. This difference in the level of activity of advective flow is probably because of the glacial–interglacial difference in hydraulic gradients resulting from sea-level change. Although fractures are hydraulically connected to the surface through the sedimentary rock, advective flow through them is inferred to remain inactive so long as sea level does not fall substantially.
ISSN:1431-2174
1435-0157
DOI:10.1007/s10040-022-02466-9