Preparation of In/Sn Nanoparticles (In3Sn and InSn4) by Wet Chemical One-Step Reduction and Performance Study
The preparation of binary alloys by surfactant-assisted chemical reduction in aqueous solution at room temperature has become a hot topic. In this article low melting point tin/indium (Sn/In) nanoparticles are synthesized. The formation process of the alloy was studied. Scanning electron microscopy,...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2022-04, Vol.12 (4), p.429 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The preparation of binary alloys by surfactant-assisted chemical reduction in aqueous solution at room temperature has become a hot topic. In this article low melting point tin/indium (Sn/In) nanoparticles are synthesized. The formation process of the alloy was studied. Scanning electron microscopy, energy spectrometry, and X-ray diffraction are used to determine the morphology, composition, and crystal structure of the nanoparticles. Study found that fully alloyed indium-tin nanoparticles can be obtained by wet chemical method and the main phases of indium-tin alloy are β-phase (In3Sn) and γ-phase (InSn4). However, the Sn phase appears at a low content of indium (40 wt%). When the content of indium increases to 45 (wt%), the tin phase disappears. In addition, the most important finding is that the composition of the indium-tin alloy can be changed by ratio control, and the content of In3Sn increases with the increase of indium content. The relative content of In3Sn attains a maximum when the content of indium increases to 60 (wt%). In contrast, the content of InSn4 decreases. Finally, differential scanning calorimetry measurements is performed to understand the melting behavior of the nanoparticles and low melting temperatures are achieved for a wide range of indium compositions (from 40% to 60%). The melting temperature is found to be in the range of 125–132 °C and it increased with increasing In3Sn (also the increase of indium content). This gives us a new understanding into the binary alloy nano-system and gives important information for the application of low temperature alloy solders. The choice of composition can be based on the corresponding melting point. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings12040429 |