Investigate the Ensemble Model by Intelligence Analysis to Improve the Accuracy of the Classification Data in the Diagnostic and Treatment Interventions for Prostate Cancer
Class imbalance problem become greatest issue in data mining, imbalanced data appears in daily application, especially in the health care. This research aims at investigating the application of ensemble model by intelligence analysis to improving the classification accuracy of imbalanced data sets o...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2022, Vol.13 (1) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Class imbalance problem become greatest issue in data mining, imbalanced data appears in daily application, especially in the health care. This research aims at investigating the application of ensemble model by intelligence analysis to improving the classification accuracy of imbalanced data sets on prostate cancer. The primary requirements obtained for this study included the datasets, relevant tools for pre-processing to identify the missing values, models for attribute selection and cross validation, data resembling framework, and intelligent algorithms for base classification. Additionally, the ensemble model and meta-learning algorithms were acquired in preparation for performance evaluation by embedding feature selecting capabilities into the classification model. The experimental results led to the conclusion that the application of ensemble learning algorithm on resampled data sets provides highly accurate classification results on single classifier J48. The study further suggests that gain ratio and ranker techniques are highly effective for attribute selection in the analysis of prostate cancer data. The lowest error rate and optimal performance accuracy in the classification of imbalanced prostate cancer data is achieved using when Adaboost algorithm is combined with single classifier J48. |
---|---|
ISSN: | 2158-107X 2156-5570 |
DOI: | 10.14569/IJACSA.2022.0130122 |