Molecularly imprinted mesoporous silica: potential of the materials, synthesis and application in the active compound separation from natural product

The availability of active compounds is quite low, and a long extraction and isolation process is required. Mesoporous silica nanoparticles (MSNs) are promising materials with varying pore sizes and a large surface area that can be used for the extraction, isolation, and separation of active compoun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical papers 2022-05, Vol.76 (5), p.2595-2613
Hauptverfasser: Lie, Kevin Reinard, Samuel, Amabel Odelia, Hasanah, Aliya Nur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The availability of active compounds is quite low, and a long extraction and isolation process is required. Mesoporous silica nanoparticles (MSNs) are promising materials with varying pore sizes and a large surface area that can be used for the extraction, isolation, and separation of active compounds from natural products. Molecularly imprinted mesoporous silica (MIP-MS), which is the combination of molecularly imprinted polymers (MIPs) and MSNs, exhibits some benefits such as improved binding capacity, reduced equilibrium time, high surface-to-volume ratio, and also good selectivity. The adsorption capacity of MIP-MS ranges from 11.9–45.31 mg/g, the imprinting factor ranges from 1.87–1.95, and the efficiency exceeds 90% after six repetitions. These properties are ideal for the isolation or separation of active compounds from natural products. This review aims to discover the potential of MIP-MS for the separation of active compounds from natural products, which is currently limited by the source of knowledge but has a great potential for its implementation. In this review, the essentials of MIP-MS, such as the synthesis methods of mesoporous silica, the application of mesoporous silica on MIPs for natural products, and the advantages of MIP-MS, will be discussed.
ISSN:0366-6352
1336-9075
2585-7290
DOI:10.1007/s11696-022-02074-7