Positive solutions of quasilinear elliptic equations with Fuchsian potentials in Wolff class
Using Harnack's inequality and a scaling argument we study Liouville-type theorems and the asymptotic behaviour of positive solutions near an isolated singular point \(\zeta \in \partial\Omega\cup\{\infty\}\) for the quasilinear elliptic equation $$-\text{div}(|\nabla u|_A^{p-2}A\nabla u)+V|u|^...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using Harnack's inequality and a scaling argument we study Liouville-type theorems and the asymptotic behaviour of positive solutions near an isolated singular point \(\zeta \in \partial\Omega\cup\{\infty\}\) for the quasilinear elliptic equation $$-\text{div}(|\nabla u|_A^{p-2}A\nabla u)+V|u|^{p-2}u =0\quad\text{ in } \Omega,$$ where \(\Omega\) is a domain in \(\mathbb{R}^d\), \(d\geq 2\), \(1 |
---|---|
ISSN: | 2331-8422 |