Simulation of Microstructure and Ionic Diffusivity for Leached Cement Pastes

AbstractA numerical framework to study the morphology change of microstructure and ionic diffusivity of leached cement pastes is proposed. According to a two-scale microstructure model, the leached cement paste in the course of portlandite dissolution and C─ S─ H decalcification is modeled. In contr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials in civil engineering 2022-07, Vol.34 (7)
Hauptverfasser: Duan, Lian, Zhou, Wei, Guo, Gaogui, Wu, Xianchen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:AbstractA numerical framework to study the morphology change of microstructure and ionic diffusivity of leached cement pastes is proposed. According to a two-scale microstructure model, the leached cement paste in the course of portlandite dissolution and C─ S─ H decalcification is modeled. In contrast to recent leaching studies that used particle-based microstructure models to analyze micrometer-sized structures, the novel aspect of this study is the consideration of capillary pores with sizes ranging from tens of nanometers to several micrometers. The evolving microstructure was coupled with the random walk algorithm to calculate diffusion properties in capillary and gel pores of cement pastes during leaching and hydration. Results were in general accord with the reported data from leaching experiments and other simulations. The rarely discussed relationships the simulated 3D microstructure and the ionic diffusivity of leached cement pastes are investigated. In particular, the pore structure, which has different degradation characteristics in each leaching stage, affects the ionic diffusivity variously. The proposed framework has potential as a tool for multiscale simulation of leaching concrete.
ISSN:0899-1561
1943-5533
DOI:10.1061/(ASCE)MT.1943-5533.0004269