On Ramanujan sums of a real variable and a new Ramanujan expansion for the divisor function
We show that the absolute convergence of a Ramanujan expansion does not guarantee the convergence of its real variable generalization, which is obtained by replacing the integer argument in the Ramanujan sums with a real number. We also construct a new Ramanujan expansion for the divisor function. W...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2022-05, Vol.58 (1), p.229-237 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 237 |
---|---|
container_issue | 1 |
container_start_page | 229 |
container_title | The Ramanujan journal |
container_volume | 58 |
creator | Fox, Matthew S. Karamchedu, Chaitanya |
description | We show that the absolute convergence of a Ramanujan expansion does not guarantee the convergence of its real variable generalization, which is obtained by replacing the integer argument in the Ramanujan sums with a real number. We also construct a new Ramanujan expansion for the divisor function. While our expansion is amenable to a continuous and absolutely convergent real variable generalization, it only interpolates the divisor function locally on
R
. |
doi_str_mv | 10.1007/s11139-021-00412-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2652091054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652091054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-d4d227ae35a01afd9b9d481f74e63f90b5dd0943bb306c576ddea1a91f12ca5f3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKv_gKeA5-gk2Y_mKMUvKBRETx7C7CbRXdpsTXar9q83uoKePM1j5vfewCPklMM5BygvIudcKgaCM4CMC7bbIxOel4IpCXI_aTkTLAMFh-QoxhYSBbKckKelp_e4Rj-06Gkc1pF2jiINFld0i6HBamUpepN23r79Ye37Bn1sOk9dF2j_Yqlptk1M2g2-7tPhmBw4XEV78jOn5PH66mF-yxbLm7v55YLVooSemcwIUaKVOQJHZ1SlTDbjrsxsIZ2CKjcGVCarSkJR52VhjEWOijsuasydnJKzMXcTutfBxl633RB8eqlFkQtQHPIsUWKk6tDFGKzTm9CsMXxoDvqrRD2WqFOJ-rtEvUsmOZpigv2zDb_R_7g-Ac7HdZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652091054</pqid></control><display><type>article</type><title>On Ramanujan sums of a real variable and a new Ramanujan expansion for the divisor function</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fox, Matthew S. ; Karamchedu, Chaitanya</creator><creatorcontrib>Fox, Matthew S. ; Karamchedu, Chaitanya</creatorcontrib><description>We show that the absolute convergence of a Ramanujan expansion does not guarantee the convergence of its real variable generalization, which is obtained by replacing the integer argument in the Ramanujan sums with a real number. We also construct a new Ramanujan expansion for the divisor function. While our expansion is amenable to a continuous and absolutely convergent real variable generalization, it only interpolates the divisor function locally on
R
.</description><identifier>ISSN: 1382-4090</identifier><identifier>EISSN: 1572-9303</identifier><identifier>DOI: 10.1007/s11139-021-00412-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Convergence ; Field Theory and Polynomials ; Fourier Analysis ; Functions of a Complex Variable ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Number Theory ; Real variables ; Sums</subject><ispartof>The Ramanujan journal, 2022-05, Vol.58 (1), p.229-237</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-d4d227ae35a01afd9b9d481f74e63f90b5dd0943bb306c576ddea1a91f12ca5f3</cites><orcidid>0000-0003-3100-084X ; 0000-0001-6078-8168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11139-021-00412-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11139-021-00412-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fox, Matthew S.</creatorcontrib><creatorcontrib>Karamchedu, Chaitanya</creatorcontrib><title>On Ramanujan sums of a real variable and a new Ramanujan expansion for the divisor function</title><title>The Ramanujan journal</title><addtitle>Ramanujan J</addtitle><description>We show that the absolute convergence of a Ramanujan expansion does not guarantee the convergence of its real variable generalization, which is obtained by replacing the integer argument in the Ramanujan sums with a real number. We also construct a new Ramanujan expansion for the divisor function. While our expansion is amenable to a continuous and absolutely convergent real variable generalization, it only interpolates the divisor function locally on
R
.</description><subject>Combinatorics</subject><subject>Convergence</subject><subject>Field Theory and Polynomials</subject><subject>Fourier Analysis</subject><subject>Functions of a Complex Variable</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Real variables</subject><subject>Sums</subject><issn>1382-4090</issn><issn>1572-9303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKv_gKeA5-gk2Y_mKMUvKBRETx7C7CbRXdpsTXar9q83uoKePM1j5vfewCPklMM5BygvIudcKgaCM4CMC7bbIxOel4IpCXI_aTkTLAMFh-QoxhYSBbKckKelp_e4Rj-06Gkc1pF2jiINFld0i6HBamUpepN23r79Ye37Bn1sOk9dF2j_Yqlptk1M2g2-7tPhmBw4XEV78jOn5PH66mF-yxbLm7v55YLVooSemcwIUaKVOQJHZ1SlTDbjrsxsIZ2CKjcGVCarSkJR52VhjEWOijsuasydnJKzMXcTutfBxl633RB8eqlFkQtQHPIsUWKk6tDFGKzTm9CsMXxoDvqrRD2WqFOJ-rtEvUsmOZpigv2zDb_R_7g-Ac7HdZg</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Fox, Matthew S.</creator><creator>Karamchedu, Chaitanya</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3100-084X</orcidid><orcidid>https://orcid.org/0000-0001-6078-8168</orcidid></search><sort><creationdate>20220501</creationdate><title>On Ramanujan sums of a real variable and a new Ramanujan expansion for the divisor function</title><author>Fox, Matthew S. ; Karamchedu, Chaitanya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-d4d227ae35a01afd9b9d481f74e63f90b5dd0943bb306c576ddea1a91f12ca5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combinatorics</topic><topic>Convergence</topic><topic>Field Theory and Polynomials</topic><topic>Fourier Analysis</topic><topic>Functions of a Complex Variable</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Real variables</topic><topic>Sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fox, Matthew S.</creatorcontrib><creatorcontrib>Karamchedu, Chaitanya</creatorcontrib><collection>CrossRef</collection><jtitle>The Ramanujan journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fox, Matthew S.</au><au>Karamchedu, Chaitanya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Ramanujan sums of a real variable and a new Ramanujan expansion for the divisor function</atitle><jtitle>The Ramanujan journal</jtitle><stitle>Ramanujan J</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>58</volume><issue>1</issue><spage>229</spage><epage>237</epage><pages>229-237</pages><issn>1382-4090</issn><eissn>1572-9303</eissn><abstract>We show that the absolute convergence of a Ramanujan expansion does not guarantee the convergence of its real variable generalization, which is obtained by replacing the integer argument in the Ramanujan sums with a real number. We also construct a new Ramanujan expansion for the divisor function. While our expansion is amenable to a continuous and absolutely convergent real variable generalization, it only interpolates the divisor function locally on
R
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11139-021-00412-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3100-084X</orcidid><orcidid>https://orcid.org/0000-0001-6078-8168</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1382-4090 |
ispartof | The Ramanujan journal, 2022-05, Vol.58 (1), p.229-237 |
issn | 1382-4090 1572-9303 |
language | eng |
recordid | cdi_proquest_journals_2652091054 |
source | SpringerLink Journals - AutoHoldings |
subjects | Combinatorics Convergence Field Theory and Polynomials Fourier Analysis Functions of a Complex Variable Mathematical functions Mathematics Mathematics and Statistics Number Theory Real variables Sums |
title | On Ramanujan sums of a real variable and a new Ramanujan expansion for the divisor function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Ramanujan%20sums%20of%20a%20real%20variable%20and%20a%20new%20Ramanujan%20expansion%20for%20the%20divisor%20function&rft.jtitle=The%20Ramanujan%20journal&rft.au=Fox,%20Matthew%20S.&rft.date=2022-05-01&rft.volume=58&rft.issue=1&rft.spage=229&rft.epage=237&rft.pages=229-237&rft.issn=1382-4090&rft.eissn=1572-9303&rft_id=info:doi/10.1007/s11139-021-00412-z&rft_dat=%3Cproquest_cross%3E2652091054%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652091054&rft_id=info:pmid/&rfr_iscdi=true |