On Ramanujan sums of a real variable and a new Ramanujan expansion for the divisor function
We show that the absolute convergence of a Ramanujan expansion does not guarantee the convergence of its real variable generalization, which is obtained by replacing the integer argument in the Ramanujan sums with a real number. We also construct a new Ramanujan expansion for the divisor function. W...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2022-05, Vol.58 (1), p.229-237 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the absolute convergence of a Ramanujan expansion does not guarantee the convergence of its real variable generalization, which is obtained by replacing the integer argument in the Ramanujan sums with a real number. We also construct a new Ramanujan expansion for the divisor function. While our expansion is amenable to a continuous and absolutely convergent real variable generalization, it only interpolates the divisor function locally on
R
. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-021-00412-z |