On Ramanujan sums of a real variable and a new Ramanujan expansion for the divisor function

We show that the absolute convergence of a Ramanujan expansion does not guarantee the convergence of its real variable generalization, which is obtained by replacing the integer argument in the Ramanujan sums with a real number. We also construct a new Ramanujan expansion for the divisor function. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2022-05, Vol.58 (1), p.229-237
Hauptverfasser: Fox, Matthew S., Karamchedu, Chaitanya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the absolute convergence of a Ramanujan expansion does not guarantee the convergence of its real variable generalization, which is obtained by replacing the integer argument in the Ramanujan sums with a real number. We also construct a new Ramanujan expansion for the divisor function. While our expansion is amenable to a continuous and absolutely convergent real variable generalization, it only interpolates the divisor function locally on R .
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-021-00412-z