In Situ Synthesized 2D Covalent Organic Framework Nanosheets Induce Growth of High‐Quality Perovskite Film for Efficient and Stable Solar Cells

Poor crystallinity of perovskite and extensive defects around grain boundaries are the acknowledged hindrances to obtaining high efficiency and long‐term stability for organic metal halide perovskite solar cells (PSCs). Here, a 2D covalent organic framework (2D COF) nanosheets, [(TPA)1(TPhT)1]CN,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-04, Vol.32 (16), p.n/a
Hauptverfasser: He, Jun, Liu, Hongli, Zhang, Fei, Li, Xianggao, Wang, Shirong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poor crystallinity of perovskite and extensive defects around grain boundaries are the acknowledged hindrances to obtaining high efficiency and long‐term stability for organic metal halide perovskite solar cells (PSCs). Here, a 2D covalent organic framework (2D COF) nanosheets, [(TPA)1(TPhT)1]CN, is first in situ synthesized in a PbI2 layer with a highly crystalline structure to precisely regulate the crystallization process of perovskite in the sequential deposition method. The existence of 2D COF nanosheets can decelerate intermolecular interdiffusion and induce perovskite crystals to grow along (110) planes with enlarged grain size. Meanwhile, 2D COF nanosheets distributed around the grain boundaries reduce the defect density and promote carriers transporting in the perovskite film. The superior properties of the perovskite film afford the champion PSC device with a power conversion efficiency of 22.04%, which is over 10% higher than the control device. Moreover, the target PSC also demonstrates outstanding long‐term stability. It can maintain over 90% of its initial value after 90 days storage in ambient conditions for unencapsulated devices. This work paves a new path for regulating the crystallization process of perovskites via 2D crystalline materials. A 2D donor–acceptor covalent organic framework nanosheet, [(TPA)1(TPhT)1]CN, is in situ synthesized in a lead iodide layer to regulate the crystallization process of a perovskite film in a sequential deposition method. A covalent organic framework incorporated perovskite solar cell is endowed with a prominent power conversion efficiency of 22.04% and excellent stability.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202110030