Global existence for the Jordan–Moore–Gibson–Thompson equation in Besov spaces

In this paper, we consider the Cauchy problem of a model in nonlinear acoustic, named the Jordan–Moore–Gibson–Thompson equation. This equation arises as an alternative model to the well-known Kuznetsov equation in acoustics. We prove global existence and optimal time decay of solutions in Besov spac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evolution equations 2022-06, Vol.22 (2), Article 32
1. Verfasser: Said-Houari, Belkacem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the Cauchy problem of a model in nonlinear acoustic, named the Jordan–Moore–Gibson–Thompson equation. This equation arises as an alternative model to the well-known Kuznetsov equation in acoustics. We prove global existence and optimal time decay of solutions in Besov spaces with a minimal regularity assumption on the initial data, lowering the regularity assumption required in Racke and Said-Houari (Commun Contemp Math. 1–39, 2019. https://doi.org/10.1142/S0219199720500698 ) for the proof of the global existence. Using a time-weighted energy method with the help of appropriate Lyapunov-type estimates, we also extend the decay rate in Racke and Said-Houari (2019) and show an optimal decay rate of the solution for initial data in the Besov space B ˙ 2 , ∞ - 3 / 2 ( R 3 ) , which is larger than the Lebesgue space L 1 ( R 3 ) due to the embedding L 1 ( R 3 ) ↪ B ˙ 2 , ∞ - 3 / 2 ( R 3 ) . Hence, we removed the L 1 -assumption on the initial data required in Racke and Said-Houari (2019) in order to prove the decay estimates of the solution.
ISSN:1424-3199
1424-3202
DOI:10.1007/s00028-022-00788-5