On existence of multiple normalized solutions to a class of elliptic problems in whole RN
In this paper, we study the existence of multiple normalized solutions to the following class of elliptic problems - Δ u = λ u + h ( ϵ x ) f ( u ) , in R N , ∫ R N | u | 2 d x = a 2 , where a , ϵ > 0 , λ ∈ R is an unknown parameter that appears as a Lagrange multiplier, h : R N → [ 0 , ∞ ) is a c...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2022, Vol.73 (3) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 73 |
creator | Alves, Claudianor O. |
description | In this paper, we study the existence of multiple normalized solutions to the following class of elliptic problems
-
Δ
u
=
λ
u
+
h
(
ϵ
x
)
f
(
u
)
,
in
R
N
,
∫
R
N
|
u
|
2
d
x
=
a
2
,
where
a
,
ϵ
>
0
,
λ
∈
R
is an unknown parameter that appears as a Lagrange multiplier,
h
:
R
N
→
[
0
,
∞
)
is a continuous function, and
f
is continuous function with
L
2
-subcritical growth. It is proved that the numbers of normalized solutions are at least the numbers of global maximum points of
h
when
ϵ
is small enough. |
doi_str_mv | 10.1007/s00033-022-01741-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2651149351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651149351</sourcerecordid><originalsourceid>FETCH-LOGICAL-p729-d938a87d9d4b3275e1f81b16cf2aa6f4b46d1f3642c0623d52a88154111c6b253</originalsourceid><addsrcrecordid>eNpFkEtLxDAUhYMoOI7-AVcB19F7k_SRpQy-YHBAZuMqpG2qGTJNbVoUf70ZK7g6m-_ce_gIuUS4RoDiJgKAEAw4Z4CFRKaOyAIlB6ZAqGOyAJCScV5kp-Qsxl3CCwSxIK-bjtovF0fb1ZaGlu4nP7reW9qFYW-8-7YNjcFPowtdpGOghtbexHhgrfeuH11N-yFU3u4jdR39fA-p_fJ8Tk5a46O9-Msl2d7fbVePbL15eFrdrllfcMUaJUpTFo1qZCXSPIttiRXmdcuNyVtZybzBVuSS15Bz0WTclCVmEhHrvOKZWJKr-Wza8DHZOOpdmIYufdQ8zxClEhkmSsxU7AfXvdnhn0LQB4V6VqiTQv2rUCvxA2v9Y34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651149351</pqid></control><display><type>article</type><title>On existence of multiple normalized solutions to a class of elliptic problems in whole RN</title><source>SpringerLink Journals</source><creator>Alves, Claudianor O.</creator><creatorcontrib>Alves, Claudianor O.</creatorcontrib><description>In this paper, we study the existence of multiple normalized solutions to the following class of elliptic problems
-
Δ
u
=
λ
u
+
h
(
ϵ
x
)
f
(
u
)
,
in
R
N
,
∫
R
N
|
u
|
2
d
x
=
a
2
,
where
a
,
ϵ
>
0
,
λ
∈
R
is an unknown parameter that appears as a Lagrange multiplier,
h
:
R
N
→
[
0
,
∞
)
is a continuous function, and
f
is continuous function with
L
2
-subcritical growth. It is proved that the numbers of normalized solutions are at least the numbers of global maximum points of
h
when
ϵ
is small enough.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-022-01741-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Continuity (mathematics) ; Engineering ; Lagrange multiplier ; Mathematical Methods in Physics ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2022, Vol.73 (3)</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p729-d938a87d9d4b3275e1f81b16cf2aa6f4b46d1f3642c0623d52a88154111c6b253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-022-01741-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-022-01741-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Alves, Claudianor O.</creatorcontrib><title>On existence of multiple normalized solutions to a class of elliptic problems in whole RN</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>In this paper, we study the existence of multiple normalized solutions to the following class of elliptic problems
-
Δ
u
=
λ
u
+
h
(
ϵ
x
)
f
(
u
)
,
in
R
N
,
∫
R
N
|
u
|
2
d
x
=
a
2
,
where
a
,
ϵ
>
0
,
λ
∈
R
is an unknown parameter that appears as a Lagrange multiplier,
h
:
R
N
→
[
0
,
∞
)
is a continuous function, and
f
is continuous function with
L
2
-subcritical growth. It is proved that the numbers of normalized solutions are at least the numbers of global maximum points of
h
when
ϵ
is small enough.</description><subject>Continuity (mathematics)</subject><subject>Engineering</subject><subject>Lagrange multiplier</subject><subject>Mathematical Methods in Physics</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkEtLxDAUhYMoOI7-AVcB19F7k_SRpQy-YHBAZuMqpG2qGTJNbVoUf70ZK7g6m-_ce_gIuUS4RoDiJgKAEAw4Z4CFRKaOyAIlB6ZAqGOyAJCScV5kp-Qsxl3CCwSxIK-bjtovF0fb1ZaGlu4nP7reW9qFYW-8-7YNjcFPowtdpGOghtbexHhgrfeuH11N-yFU3u4jdR39fA-p_fJ8Tk5a46O9-Msl2d7fbVePbL15eFrdrllfcMUaJUpTFo1qZCXSPIttiRXmdcuNyVtZybzBVuSS15Bz0WTclCVmEhHrvOKZWJKr-Wza8DHZOOpdmIYufdQ8zxClEhkmSsxU7AfXvdnhn0LQB4V6VqiTQv2rUCvxA2v9Y34</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Alves, Claudianor O.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2022</creationdate><title>On existence of multiple normalized solutions to a class of elliptic problems in whole RN</title><author>Alves, Claudianor O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p729-d938a87d9d4b3275e1f81b16cf2aa6f4b46d1f3642c0623d52a88154111c6b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Continuity (mathematics)</topic><topic>Engineering</topic><topic>Lagrange multiplier</topic><topic>Mathematical Methods in Physics</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, Claudianor O.</creatorcontrib><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, Claudianor O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On existence of multiple normalized solutions to a class of elliptic problems in whole RN</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2022</date><risdate>2022</risdate><volume>73</volume><issue>3</issue><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>In this paper, we study the existence of multiple normalized solutions to the following class of elliptic problems
-
Δ
u
=
λ
u
+
h
(
ϵ
x
)
f
(
u
)
,
in
R
N
,
∫
R
N
|
u
|
2
d
x
=
a
2
,
where
a
,
ϵ
>
0
,
λ
∈
R
is an unknown parameter that appears as a Lagrange multiplier,
h
:
R
N
→
[
0
,
∞
)
is a continuous function, and
f
is continuous function with
L
2
-subcritical growth. It is proved that the numbers of normalized solutions are at least the numbers of global maximum points of
h
when
ϵ
is small enough.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-022-01741-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2022, Vol.73 (3) |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_journals_2651149351 |
source | SpringerLink Journals |
subjects | Continuity (mathematics) Engineering Lagrange multiplier Mathematical Methods in Physics Theoretical and Applied Mechanics |
title | On existence of multiple normalized solutions to a class of elliptic problems in whole RN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A00%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20existence%20of%20multiple%20normalized%20solutions%20to%20a%20class%20of%20elliptic%20problems%20in%20whole%20RN&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Alves,%20Claudianor%20O.&rft.date=2022&rft.volume=73&rft.issue=3&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-022-01741-9&rft_dat=%3Cproquest_sprin%3E2651149351%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651149351&rft_id=info:pmid/&rfr_iscdi=true |