On existence of multiple normalized solutions to a class of elliptic problems in whole RN
In this paper, we study the existence of multiple normalized solutions to the following class of elliptic problems - Δ u = λ u + h ( ϵ x ) f ( u ) , in R N , ∫ R N | u | 2 d x = a 2 , where a , ϵ > 0 , λ ∈ R is an unknown parameter that appears as a Lagrange multiplier, h : R N → [ 0 , ∞ ) is a c...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2022, Vol.73 (3) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the existence of multiple normalized solutions to the following class of elliptic problems
-
Δ
u
=
λ
u
+
h
(
ϵ
x
)
f
(
u
)
,
in
R
N
,
∫
R
N
|
u
|
2
d
x
=
a
2
,
where
a
,
ϵ
>
0
,
λ
∈
R
is an unknown parameter that appears as a Lagrange multiplier,
h
:
R
N
→
[
0
,
∞
)
is a continuous function, and
f
is continuous function with
L
2
-subcritical growth. It is proved that the numbers of normalized solutions are at least the numbers of global maximum points of
h
when
ϵ
is small enough. |
---|---|
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-022-01741-9 |