On existence of multiple normalized solutions to a class of elliptic problems in whole RN

In this paper, we study the existence of multiple normalized solutions to the following class of elliptic problems - Δ u = λ u + h ( ϵ x ) f ( u ) , in R N , ∫ R N | u | 2 d x = a 2 , where a , ϵ > 0 , λ ∈ R is an unknown parameter that appears as a Lagrange multiplier, h : R N → [ 0 , ∞ ) is a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2022, Vol.73 (3)
1. Verfasser: Alves, Claudianor O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the existence of multiple normalized solutions to the following class of elliptic problems - Δ u = λ u + h ( ϵ x ) f ( u ) , in R N , ∫ R N | u | 2 d x = a 2 , where a , ϵ > 0 , λ ∈ R is an unknown parameter that appears as a Lagrange multiplier, h : R N → [ 0 , ∞ ) is a continuous function, and f is continuous function with L 2 -subcritical growth. It is proved that the numbers of normalized solutions are at least the numbers of global maximum points of h when ϵ is small enough.
ISSN:0044-2275
1420-9039
DOI:10.1007/s00033-022-01741-9