A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate
The static bending behavior of porous functionally graded (PFG) micro-plate under the geometrically nonlinear analysis is studied in this article. A small-scale nonlinear solution is established using the Von-Kármán hypothesis and the modified couple stress theory (MCST). To obtain the deflection of...
Gespeichert in:
Veröffentlicht in: | Engineering with computers 2022-04, Vol.38 (Suppl 1), p.449-460 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The static bending behavior of porous functionally graded (PFG) micro-plate under the geometrically nonlinear analysis is studied in this article. A small-scale nonlinear solution is established using the Von-Kármán hypothesis and the modified couple stress theory (MCST). To obtain the deflection of the plate, the Reddy higher-order plate theory coupled with isogeometric analysis (IGA) is utilized. The distribution of porosities is assumed to be even and uneven across the plate’s thickness and the effective material properties of porous functionally graded micro-plate are calculated using the refined rule-of-mixture hypothesis. The influence of power index, porosity parameter and material length scale parameter on the nonlinear behaviors of static bending of porous FGM micro-plates are also investigated using several numerical examples. |
---|---|
ISSN: | 0177-0667 1435-5663 |
DOI: | 10.1007/s00366-020-01154-0 |