On Woven Fabric Sound Absorption Prediction

For building applications, woven fabrics have been widely used as finishing elements of room interior but not in particular aimed for sound absorbers. Considering the micro perforation of the woven fabrics, they should have potential to be used as micro-perforated panel (MPP) absorbers; some measure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of acoustics 2018-01, Vol.43 (4), p.707
Hauptverfasser: Prasetiyo, Iwan, Desendra, Gradi, Hermanto, Melissa N, Adhika, Damar R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For building applications, woven fabrics have been widely used as finishing elements of room interior but not in particular aimed for sound absorbers. Considering the micro perforation of the woven fabrics, they should have potential to be used as micro-perforated panel (MPP) absorbers; some measurement results indicated such absorption ability. Hence, it is of importance to have a sound absorption model of the woven fabrics to enable us predicting their sound absorption characteristic that is beneficial in engineering design phase. Treating the woven fabric as a rigid frame, a fluid equivalent model is employed based on the formulation of Johnson-Champoux-Allard (JCA). The model obtained is then validated by measurement results where three kinds of commercially available woven fabrics are evaluated by considering their perforation properties. It is found that the model can reasonably predict their sound absorption coefficients. However, the presence of perturbations in pores give rise to inaccuracy of resistive component of the predicted surface impedance. The use of measured static flow resistive and corrected viscous length in the calculations are useful to cope with such a situation. Otherwise, the use of an optimized simple model as a function of flow resistivity is also applicable for this case.
ISSN:0137-5075
2300-262X
DOI:10.24425/aoa.2018.125164