Biodiesel Production from Reutealis trisperma Oil Using Conventional and Ultrasonication through Esterification and Transesterification

The limitation of fossil fuel sources and negative environmental impact persuade scientists around the world to find a solution. One possible solution is by using renewable fuel to replace fossil fuel with an inexpensive, fast, and effective production process. The objective of this study is to inve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2021-03, Vol.13 (6), p.3350
Hauptverfasser: Riayatsyah, Teuku Meurah Indra, Thaib, Razali, Silitonga, Arridina Susan, Milano, Jassinnee, Shamsuddin, Abd. Halim, Sebayang, Abdi Hanra, Rahmawaty, Sutrisno, Joko, Mahlia, Teuku Meurah Indra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The limitation of fossil fuel sources and negative environmental impact persuade scientists around the world to find a solution. One possible solution is by using renewable fuel to replace fossil fuel with an inexpensive, fast, and effective production process. The objective of this study is to investigate the biodiesel production from crude Reutealis trisperma oil using the conventional and the ultrasonic bath stirrer method through the esterification and transesterification process. The result shows that the most effective reaction time with an optimum condition for the esterification and transesterification of Reutealis trisperma oil is at 2 h 30 min by using the ultrasonic bath stirrer method. The optimum conditions at a temperature of 55 °C for the esterification and at 60 °C for transesterification with 2% (v/v) of sulphuric acid with catalyst concentration of 0.5 wt.% were a methanol-to-oil ratio of 60%, and agitation speed of 1000 rpm. This optimum condition gives the highest yield of 95.29% for the Reutealis trisperma biodiesel. The results showed that the ultrasonic bath stirrer method had more effect on the reaction time needed than using the conventional method and reduced half of the conventional method reaction time. Finally, the properties of Reutealis trisperma biodiesel fulfilled the ASTM D6751 and EN 14214 biodiesel standards with density, 892 kg/m3; pour point, −2 °C; cloud point, −1 °C; flash point, 206.5 °C; calorific value, 40.098 MJ/kg; and acid value, 0.26 mg KOH/g.
ISSN:2071-1050
2071-1050
DOI:10.3390/su13063350