On the expected number of real roots of polynomials and exponential sums
The expected number of real projective roots of orthogonally invariant random homogeneous real polynomial systems is known to be equal to the square root of the Bézout number. A similar result is known for random multi-homogeneous systems, invariant through a product of orthogonal groups. In this no...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The expected number of real projective roots of orthogonally invariant random homogeneous real polynomial systems is known to be equal to the square root of the Bézout number. A similar result is known for random multi-homogeneous systems, invariant through a product of orthogonal groups. In this note, those results are generalized to certain families of sparse polynomial systems, with no orthogonal invariance assumed. |
---|---|
ISSN: | 2331-8422 |