Genetic resistance derived from Solanum pimpinellifolium AAU2019 is monogenic recessive to tomato leaf curl virus
Tomato leaf curl disease is a severe threat to tomato production. Yield losses are generally high in the absence of effective management strategies. The disease is caused by tomato leaf curl virus (ToLCV) and is transmitted by a whitefly vector that is challenging to control. Resistance to ToLCV is...
Gespeichert in:
Veröffentlicht in: | Plant pathology 2022-05, Vol.71 (4), p.990-1000 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tomato leaf curl disease is a severe threat to tomato production. Yield losses are generally high in the absence of effective management strategies. The disease is caused by tomato leaf curl virus (ToLCV) and is transmitted by a whitefly vector that is challenging to control. Resistance to ToLCV is absent from most cultivated tomato gene pools, although the use of resistant cultivars would provide a better control option than minimizing the vector population. Unfortunately, resistance sources based on field screening break down when virus pressure is severe. Our previous screening and virus testing of 40 tomato genotypes led to the identification of a highly resistant genotype, Solanum pimpinellifolium AAU2019, as a new source of resistance. In this study, we investigated the inheritance and genetics of resistance to ToLCV in the cross of Pusa Ruby × S. pimpinellifolium AAU2019 in F2 and BC1Ps populations, revealing a monogenic recessive gene (best‐fit ratios of resistance: susceptible to be 1:3 and 0:1) responsible for ToLCV resistance in S. pimpinellifolium AAU2019. Hence, S. pimpinellifolium AAU2019 could be considered as a potential donor parent in breeding programmes to develop tomato cultivars with resistance to ToLCV.
A monogenic recessive character in a resistant genotype Solanum pimpinellifolium AAU2019 conferred resistance to ToLCV and this genotype can serve as a potential donor parent in a breeding programme. |
---|---|
ISSN: | 0032-0862 1365-3059 |
DOI: | 10.1111/ppa.13537 |