Essential ideals represented by mod-annihilators of modules

Let R be a commutative ring with unity, M be a unitary R -module and G a finite abelian group (viewed as a Z -module). The main objective of this paper is to study properties of mod-annihilators of M . For x ∈ M , we study the ideals [ x : M ] = { r ∈ R | r M ⊆ R x } of R corresponding to mod-annihi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Afrika mathematica 2022-06, Vol.33 (2), Article 52
Hauptverfasser: Raja, Rameez, Pirzada, Shariefuddin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be a commutative ring with unity, M be a unitary R -module and G a finite abelian group (viewed as a Z -module). The main objective of this paper is to study properties of mod-annihilators of M . For x ∈ M , we study the ideals [ x : M ] = { r ∈ R | r M ⊆ R x } of R corresponding to mod-annihilator of M . We investigate as when [ x  :  M ] is an essential ideal of R . We prove that the arbitrary intersection of essential ideals represented by mod-annihilators is an essential ideal. We observe that [ x  :  M ] is injective if and only if R is non-singular and the radical of R /[ x  :  M ] is zero. Moreover, if essential socle of M is non-zero, then we show that [ x  :  M ] is the intersection of maximal ideals and [ x : M ] 2 = [ x : M ] . Finally, we discuss the correspondence of essential ideals of R and vertices of the annihilating graphs realized by M over R .
ISSN:1012-9405
2190-7668
DOI:10.1007/s13370-022-00988-9