Slab-derived devolatilization fluids oxidized by subducted metasedimentary rocks

Metamorphic devolatilization of subducted slabs generates aqueous fluids that ascend into the mantle wedge, driving the partial melting that produces arc magmas. These magmas have oxygen fugacities some 10–1,000 times higher than magmas generated at mid-ocean ridges. Whether this oxidized magmatic c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature geoscience 2022-04, Vol.15 (4), p.320-326
Hauptverfasser: Ague, Jay J., Tassara, Santiago, Holycross, Megan E., Li, Ji-Lei, Cottrell, Elizabeth, Schwarzenbach, Esther M., Fassoulas, Charalampos, John, Timm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metamorphic devolatilization of subducted slabs generates aqueous fluids that ascend into the mantle wedge, driving the partial melting that produces arc magmas. These magmas have oxygen fugacities some 10–1,000 times higher than magmas generated at mid-ocean ridges. Whether this oxidized magmatic character is imparted by slab fluids or is acquired during ascent and interaction with the surrounding mantle or crust is debated. Here we study the petrology of metasedimentary rocks from two Tertiary Aegean subduction complexes in combination with reactive transport modelling to investigate the oxidative potential of the sedimentary rocks that cover slabs. We find that the metasedimentary rocks preserve evidence for fluid-mediated redox reactions and could be highly oxidized. Furthermore, the modelling demonstrates that layers of these oxidized rocks less than about 200 m thick have the capacity to oxidize the ascending slab dehydration flux via redox reactions that remove H 2 , CH 4 and/or H 2 S from the fluids. These fluids can then oxidize the overlying mantle wedge at rates comparable to arc magma generation rates, primarily via reactions involving sulfur species. Oxidized metasedimentary rocks need not generate large amounts of fluid themselves but could instead oxidize slab dehydration fluids ascending through them. Proposed Phanerozoic increases in arc magma oxygen fugacity may reflect the recycling of oxidative weathering products following Neoproterozoic–Palaeozoic marine and atmospheric oxygenation. Metasedimentary rocks atop the downgoing slab oxidize ascending slab-derived dehydration fluids by removing reduced species, according to petrological analysis of subduction complex metasedimentary rocks and reactive transport modelling.
ISSN:1752-0894
1752-0908
DOI:10.1038/s41561-022-00904-7