Predicting the Oil Market
We study the performance of many traditional and novel, text-based variables for in-sample and out-of-sample forecasting of oil spot, futures, and energy company stock returns, and changes in oil volatility, production, and inventories. After controlling for small-sample biases, we find evidence of...
Gespeichert in:
Veröffentlicht in: | NBER Working Paper Series 2021-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | NBER Working Paper Series |
container_volume | |
creator | Calomiris, Charles W Çakır Melek, Nida Mamaysky, Harry |
description | We study the performance of many traditional and novel, text-based variables for in-sample and out-of-sample forecasting of oil spot, futures, and energy company stock returns, and changes in oil volatility, production, and inventories. After controlling for small-sample biases, we find evidence of in-sample predictability. Our text measures, derived using energy news articles, hold their own against traditional variables. While we cannot identify ex-ante rules for selecting successful out-of-sample forecasters, an analysis of all possible two-variable models reveals out-of-sample performance above that expected under random variation. Our findings provide new directions for identifying robust forecasting models for oil markets, and beyond. |
doi_str_mv | 10.3386/w29379 |
format | Article |
fullrecord | <record><control><sourceid>proquest_econi</sourceid><recordid>TN_cdi_proquest_journals_2649349419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><nber_id>w29379</nber_id><sourcerecordid>2649349419</sourcerecordid><originalsourceid>FETCH-LOGICAL-e729-a6ec416170fc7cd93e799dedd0868781e9db18e94357a23bcb9be3c40a657e1d3</originalsourceid><addsrcrecordid>eNo90DtLA0EUBeApFIyJ9lotWK_Oe-aWEjQKCbFIv8zjRifG3TizQfz3rqxYXQ58nAOXkEtGb4Ww-u6LgzBwQibUgq1_wxk5L2VHKbeWsgm5eskYU-hT-1r1b1it075aufyO_Yycbt2-4MXfnZLN48Nm_lQv14vn-f2yRsOhdhqDZJoZug0mRBBoACLGSK22xjKE6JlFkEIZx4UPHjyKIKnTyiCLYkpuxtpD7j6PWPpm1x1zOyw2XEsQEiSDQVWjwtC1qTSHnD5c_m6YMQpAWVADuR5J6zH_g_EB4gdxAUvR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649349419</pqid></control><display><type>article</type><title>Predicting the Oil Market</title><source>National Bureau of Economic Research Publications</source><source>Alma/SFX Local Collection</source><creator>Calomiris, Charles W ; Çakır Melek, Nida ; Mamaysky, Harry</creator><creatorcontrib>Calomiris, Charles W ; Çakır Melek, Nida ; Mamaysky, Harry</creatorcontrib><description>We study the performance of many traditional and novel, text-based variables for in-sample and out-of-sample forecasting of oil spot, futures, and energy company stock returns, and changes in oil volatility, production, and inventories. After controlling for small-sample biases, we find evidence of in-sample predictability. Our text measures, derived using energy news articles, hold their own against traditional variables. While we cannot identify ex-ante rules for selecting successful out-of-sample forecasters, an analysis of all possible two-variable models reveals out-of-sample performance above that expected under random variation. Our findings provide new directions for identifying robust forecasting models for oil markets, and beyond.</description><identifier>ISSN: 0898-2937</identifier><identifier>DOI: 10.3386/w29379</identifier><language>eng</language><publisher>Cambridge, Mass: National Bureau of Economic Research</publisher><subject>1998-2020 ; Asset Pricing ; Economic theory ; Environment and Energy Economics ; International Finance and Macroeconomics ; Kapitalmarktrendite ; Prognoseverfahren ; Theorie ; USA ; Ölmarkt</subject><ispartof>NBER Working Paper Series, 2021-10</ispartof><rights>Copyright National Bureau of Economic Research, Inc. Oct 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Calomiris, Charles W</creatorcontrib><creatorcontrib>Çakır Melek, Nida</creatorcontrib><creatorcontrib>Mamaysky, Harry</creatorcontrib><title>Predicting the Oil Market</title><title>NBER Working Paper Series</title><description>We study the performance of many traditional and novel, text-based variables for in-sample and out-of-sample forecasting of oil spot, futures, and energy company stock returns, and changes in oil volatility, production, and inventories. After controlling for small-sample biases, we find evidence of in-sample predictability. Our text measures, derived using energy news articles, hold their own against traditional variables. While we cannot identify ex-ante rules for selecting successful out-of-sample forecasters, an analysis of all possible two-variable models reveals out-of-sample performance above that expected under random variation. Our findings provide new directions for identifying robust forecasting models for oil markets, and beyond.</description><subject>1998-2020</subject><subject>Asset Pricing</subject><subject>Economic theory</subject><subject>Environment and Energy Economics</subject><subject>International Finance and Macroeconomics</subject><subject>Kapitalmarktrendite</subject><subject>Prognoseverfahren</subject><subject>Theorie</subject><subject>USA</subject><subject>Ölmarkt</subject><issn>0898-2937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>NBR</sourceid><sourceid>BENPR</sourceid><recordid>eNo90DtLA0EUBeApFIyJ9lotWK_Oe-aWEjQKCbFIv8zjRifG3TizQfz3rqxYXQ58nAOXkEtGb4Ww-u6LgzBwQibUgq1_wxk5L2VHKbeWsgm5eskYU-hT-1r1b1it075aufyO_Yycbt2-4MXfnZLN48Nm_lQv14vn-f2yRsOhdhqDZJoZug0mRBBoACLGSK22xjKE6JlFkEIZx4UPHjyKIKnTyiCLYkpuxtpD7j6PWPpm1x1zOyw2XEsQEiSDQVWjwtC1qTSHnD5c_m6YMQpAWVADuR5J6zH_g_EB4gdxAUvR</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Calomiris, Charles W</creator><creator>Çakır Melek, Nida</creator><creator>Mamaysky, Harry</creator><general>National Bureau of Economic Research</general><general>National Bureau of Economic Research, Inc</general><scope>CZO</scope><scope>MPB</scope><scope>NBR</scope><scope>XD6</scope><scope>OQ6</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20211001</creationdate><title>Predicting the Oil Market</title><author>Calomiris, Charles W ; Çakır Melek, Nida ; Mamaysky, Harry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e729-a6ec416170fc7cd93e799dedd0868781e9db18e94357a23bcb9be3c40a657e1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1998-2020</topic><topic>Asset Pricing</topic><topic>Economic theory</topic><topic>Environment and Energy Economics</topic><topic>International Finance and Macroeconomics</topic><topic>Kapitalmarktrendite</topic><topic>Prognoseverfahren</topic><topic>Theorie</topic><topic>USA</topic><topic>Ölmarkt</topic><toplevel>online_resources</toplevel><creatorcontrib>Calomiris, Charles W</creatorcontrib><creatorcontrib>Çakır Melek, Nida</creatorcontrib><creatorcontrib>Mamaysky, Harry</creatorcontrib><collection>NBER Working Papers</collection><collection>NBER</collection><collection>National Bureau of Economic Research Publications</collection><collection>NBER Technical Working Papers Archive</collection><collection>ECONIS</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calomiris, Charles W</au><au>Çakır Melek, Nida</au><au>Mamaysky, Harry</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Predicting the Oil Market</atitle><jtitle>NBER Working Paper Series</jtitle><date>2021-10-01</date><risdate>2021</risdate><issn>0898-2937</issn><abstract>We study the performance of many traditional and novel, text-based variables for in-sample and out-of-sample forecasting of oil spot, futures, and energy company stock returns, and changes in oil volatility, production, and inventories. After controlling for small-sample biases, we find evidence of in-sample predictability. Our text measures, derived using energy news articles, hold their own against traditional variables. While we cannot identify ex-ante rules for selecting successful out-of-sample forecasters, an analysis of all possible two-variable models reveals out-of-sample performance above that expected under random variation. Our findings provide new directions for identifying robust forecasting models for oil markets, and beyond.</abstract><cop>Cambridge, Mass</cop><pub>National Bureau of Economic Research</pub><doi>10.3386/w29379</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-2937 |
ispartof | NBER Working Paper Series, 2021-10 |
issn | 0898-2937 |
language | eng |
recordid | cdi_proquest_journals_2649349419 |
source | National Bureau of Economic Research Publications; Alma/SFX Local Collection |
subjects | 1998-2020 Asset Pricing Economic theory Environment and Energy Economics International Finance and Macroeconomics Kapitalmarktrendite Prognoseverfahren Theorie USA Ölmarkt |
title | Predicting the Oil Market |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Predicting%20the%20Oil%20Market&rft.jtitle=NBER%20Working%20Paper%20Series&rft.au=Calomiris,%20Charles%20W&rft.date=2021-10-01&rft.issn=0898-2937&rft_id=info:doi/10.3386/w29379&rft_dat=%3Cproquest_econi%3E2649349419%3C/proquest_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649349419&rft_id=info:pmid/&rft_nber_id=w29379&rfr_iscdi=true |