Predicting the Oil Market

We study the performance of many traditional and novel, text-based variables for in-sample and out-of-sample forecasting of oil spot, futures, and energy company stock returns, and changes in oil volatility, production, and inventories. After controlling for small-sample biases, we find evidence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NBER Working Paper Series 2021-10
Hauptverfasser: Calomiris, Charles W, Çakır Melek, Nida, Mamaysky, Harry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the performance of many traditional and novel, text-based variables for in-sample and out-of-sample forecasting of oil spot, futures, and energy company stock returns, and changes in oil volatility, production, and inventories. After controlling for small-sample biases, we find evidence of in-sample predictability. Our text measures, derived using energy news articles, hold their own against traditional variables. While we cannot identify ex-ante rules for selecting successful out-of-sample forecasters, an analysis of all possible two-variable models reveals out-of-sample performance above that expected under random variation. Our findings provide new directions for identifying robust forecasting models for oil markets, and beyond.
ISSN:0898-2937
DOI:10.3386/w29379