Influence of Different Types of Wastes on Mechanical and Durability Properties of Interlocking Concrete Block Paving (ICBP): A Review

This paper examines the compressive, flexural and tensile strength, ultrasonic pulse velocity, unit weight, water absorption, freeze-thawing, thermal and abrasion resistance, and microstructural properties of Interlocking Concrete Block Paving (ICBP) containing major industrial and agricultural wast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-04, Vol.14 (7), p.3733
Hauptverfasser: Bilir, Turhan, Aygun, Beyza Fahriye, Shi, Jinyan, Gencel, Osman, Ozbakkaloglu, Togay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper examines the compressive, flexural and tensile strength, ultrasonic pulse velocity, unit weight, water absorption, freeze-thawing, thermal and abrasion resistance, and microstructural properties of Interlocking Concrete Block Paving (ICBP) containing major industrial and agricultural wastes along with an assessment of their environmental effects, with a specific focus on recent work. The color, shape, and patterns of the blocks, their advantages, and their relationship with sustainability are discussed in this study. In addition, a limited number of studies that investigated the use of other byproducts are presented. Based on a review of the existing studies in the literature, recommendations are made for future studies. It has been determined that up to 30% inclusion of waste evaluated in ICBP provides optimal performance in terms of the evaluated properties. Moreover, as ICBP provides opportunities for low-energy concrete block production, the environmental burden and total cost of concrete and concrete block pavements can be reduced. Considering these benefits, studies performed on this subject seem promising. However, one of the missing points in ICBP is that the surface layer is not homogeneous due to the presence of various material types due to the coating design and analysis method. Therefore, modified slab analysis, layered elastic analysis, and finite element analysis can be used to analyze ICBP in detail.
ISSN:2071-1050
2071-1050
DOI:10.3390/su14073733