Lower order terms in divergence form versus lower order terms with natural growth in some Dirichlet problems

We study the existence of solutions for some nonlinear elliptic boundary value problems, whose general form is: - div ( M ( x ) ∇ u ) + g ( u ) | ∇ u | 2 = - div ( E ( x , u ) ) + f ( x ) in Ω , u = 0 on ∂ Ω , where Ω is an open bounded subset of R N and f ∈ L 1 ( Ω ) . Despite this poor summability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2022-07, Vol.116 (3), Article 95
Hauptverfasser: Boccardo, Lucio, Polito, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the existence of solutions for some nonlinear elliptic boundary value problems, whose general form is: - div ( M ( x ) ∇ u ) + g ( u ) | ∇ u | 2 = - div ( E ( x , u ) ) + f ( x ) in Ω , u = 0 on ∂ Ω , where Ω is an open bounded subset of R N and f ∈ L 1 ( Ω ) . Despite this poor summability, we prove the existence of finite energy solutions due to the effect of the presence of the term g ( u ) | ∇ u | 2 .
ISSN:1578-7303
1579-1505
DOI:10.1007/s13398-022-01232-6