Channel Estimation and User Localization for IRS-Assisted MIMO-OFDM Systems

We consider the channel estimation problem and the channel-based wireless applications in multiple-input multiple-output orthogonal frequency division multiplexing systems assisted by intelligent reconfigurable surfaces (IRSs). To obtain the necessary channel parameters, i.e., angles, delays and gai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2022-04, Vol.21 (4), p.2320-2335
Hauptverfasser: Lin, Yuxing, Jin, Shi, Matthaiou, Michail, You, Xiaohu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the channel estimation problem and the channel-based wireless applications in multiple-input multiple-output orthogonal frequency division multiplexing systems assisted by intelligent reconfigurable surfaces (IRSs). To obtain the necessary channel parameters, i.e., angles, delays and gains, for environment mapping and user localization, we propose a novel twin-IRS structure consisting of two IRS planes with a relative spatial rotation. We model the training signal from the user equipment to the base station via IRSs as a third-order canonical polyadic tensor with a maximal tensor rank equal to the number of IRS unit cells. We present four designs of IRS training coefficients, i.e., random, structured, grouping and sparse patterns, and analyze the corresponding uniqueness conditions of channel estimation. We extract the cascaded channel parameters by leveraging array signal processing and atomic norm denoising techniques. Based on the characteristics of the twin-IRS structures, we formulate a nonlinear equation system to exactly recover the multipath parameters by two efficient decoupling modes. We realize environment mapping and user localization based on the estimated channel parameters. Simulation results indicate that the proposed twin-IRS structure and estimation schemes can recover the channel state information with remarkable accuracy, thereby offering a centimeter-level resolution of user positioning.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2021.3111176