Theoretical investigations on a novel CL-20/LLM-105 cocrystal explosive by molecular dynamics method
The hexanitrohexaazaisowurtzitane/2,6-diamino-3,5-dinitropyrazine-1-oxide (CL-20/LLM-105) cocrystal models with different component ratios were established by the substitution method. The stability, sensitivity, energetic performance, and mechanical properties of CL-20, LLM-105, and CL-20/LLM-105 co...
Gespeichert in:
Veröffentlicht in: | Theoretical chemistry accounts 2022-04, Vol.141 (4), Article 23 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Theoretical chemistry accounts |
container_volume | 141 |
creator | Hang, Gui-yun Wang, Jin-tao Wang, Tao Shen, Hui-ming Yu, Wen-li |
description | The hexanitrohexaazaisowurtzitane/2,6-diamino-3,5-dinitropyrazine-1-oxide (CL-20/LLM-105) cocrystal models with different component ratios were established by the substitution method. The stability, sensitivity, energetic performance, and mechanical properties of CL-20, LLM-105, and CL-20/LLM-105 cocrystal models were predicted by the molecular dynamics method. The results show that the CL-20/LLM-105 cocrystal model with component ratio of 2:1 has the highest value of binding energy and is the most stable model. The cocrystal model has shorter trigger bond length than pure CL-20, but higher value of trigger bond energy and cohesive energy density, which implies that the sensitivity of cocrystal explosive is decreased. The cocrystal explosive has lower energy density than CL-20, but the cocrystal explosive with molar ratio of 10:1~2:1 still has high energy density and can be regarded as novel high energy density compound (HEDC). The tensile modulus, shear modulus, and bulk modulus of cocrystal models are decreased, Cauchy pressure is increased, meaning that the mechanical properties is improved. In a word, the CL-20/LLM-105 cocrystal explosive with component ratio of 2:1 has the best stability, lowest mechanical sensitivity, most desirable mechanical properties, and high energy density, it is very promising to become a novel HEDC. |
doi_str_mv | 10.1007/s00214-022-02886-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2648149884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648149884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-915442084354c3e1107efa5ddeed0cbf6a0a1037f958cb621b0cff0ca1c226bb3</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4MoOKdfwFPAc9ybP23Towx1QsXLBG8hTdOto21m0g377Y124M1DeHP4Pb-X90HolsI9BcgWAYBRQYCx-KRMSXqGZlRwRhjj4vz0l5J-XKKrEHYQ8yzJZqhab63zdmiMbnHTH20Ymo0eGtcH7Hqsce-OtsXLgjBYFMUroZBg44wfwxAJ-7VvXWiOFpcj7lxrzaHVHldjr7vGBNzZYeuqa3RR6zbYm9Oco_enx_VyRYq355flQ0EMp_lAcpoIwUAKngjDLaWQ2VonVWVtBaasUw2aAs_qPJGmTBktwdQ1GE0NY2lZ8jm6m3r33n0e4ilq5w6-jysVS4WkIpexfI7YlDLeheBtrfa-6bQfFQX1Y1NNNlVUpH5tqjRCfIJCDPcb6_-q_6G-Ae30d8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648149884</pqid></control><display><type>article</type><title>Theoretical investigations on a novel CL-20/LLM-105 cocrystal explosive by molecular dynamics method</title><source>Springer Nature - Complete Springer Journals</source><creator>Hang, Gui-yun ; Wang, Jin-tao ; Wang, Tao ; Shen, Hui-ming ; Yu, Wen-li</creator><creatorcontrib>Hang, Gui-yun ; Wang, Jin-tao ; Wang, Tao ; Shen, Hui-ming ; Yu, Wen-li</creatorcontrib><description>The hexanitrohexaazaisowurtzitane/2,6-diamino-3,5-dinitropyrazine-1-oxide (CL-20/LLM-105) cocrystal models with different component ratios were established by the substitution method. The stability, sensitivity, energetic performance, and mechanical properties of CL-20, LLM-105, and CL-20/LLM-105 cocrystal models were predicted by the molecular dynamics method. The results show that the CL-20/LLM-105 cocrystal model with component ratio of 2:1 has the highest value of binding energy and is the most stable model. The cocrystal model has shorter trigger bond length than pure CL-20, but higher value of trigger bond energy and cohesive energy density, which implies that the sensitivity of cocrystal explosive is decreased. The cocrystal explosive has lower energy density than CL-20, but the cocrystal explosive with molar ratio of 10:1~2:1 still has high energy density and can be regarded as novel high energy density compound (HEDC). The tensile modulus, shear modulus, and bulk modulus of cocrystal models are decreased, Cauchy pressure is increased, meaning that the mechanical properties is improved. In a word, the CL-20/LLM-105 cocrystal explosive with component ratio of 2:1 has the best stability, lowest mechanical sensitivity, most desirable mechanical properties, and high energy density, it is very promising to become a novel HEDC.</description><identifier>ISSN: 1432-881X</identifier><identifier>EISSN: 1432-2234</identifier><identifier>DOI: 10.1007/s00214-022-02886-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic/Molecular Structure and Spectra ; Bond energy ; Bulk density ; Bulk modulus ; Chemistry ; Chemistry and Materials Science ; Energy ; Flux density ; Inorganic Chemistry ; Mechanical properties ; Modulus of elasticity ; Molecular dynamics ; Organic Chemistry ; Physical Chemistry ; Regular Article ; Sensitivity ; Shear modulus ; Stability ; Theoretical and Computational Chemistry</subject><ispartof>Theoretical chemistry accounts, 2022-04, Vol.141 (4), Article 23</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-915442084354c3e1107efa5ddeed0cbf6a0a1037f958cb621b0cff0ca1c226bb3</citedby><cites>FETCH-LOGICAL-c319t-915442084354c3e1107efa5ddeed0cbf6a0a1037f958cb621b0cff0ca1c226bb3</cites><orcidid>0000-0003-3936-2829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00214-022-02886-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00214-022-02886-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hang, Gui-yun</creatorcontrib><creatorcontrib>Wang, Jin-tao</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Shen, Hui-ming</creatorcontrib><creatorcontrib>Yu, Wen-li</creatorcontrib><title>Theoretical investigations on a novel CL-20/LLM-105 cocrystal explosive by molecular dynamics method</title><title>Theoretical chemistry accounts</title><addtitle>Theor Chem Acc</addtitle><description>The hexanitrohexaazaisowurtzitane/2,6-diamino-3,5-dinitropyrazine-1-oxide (CL-20/LLM-105) cocrystal models with different component ratios were established by the substitution method. The stability, sensitivity, energetic performance, and mechanical properties of CL-20, LLM-105, and CL-20/LLM-105 cocrystal models were predicted by the molecular dynamics method. The results show that the CL-20/LLM-105 cocrystal model with component ratio of 2:1 has the highest value of binding energy and is the most stable model. The cocrystal model has shorter trigger bond length than pure CL-20, but higher value of trigger bond energy and cohesive energy density, which implies that the sensitivity of cocrystal explosive is decreased. The cocrystal explosive has lower energy density than CL-20, but the cocrystal explosive with molar ratio of 10:1~2:1 still has high energy density and can be regarded as novel high energy density compound (HEDC). The tensile modulus, shear modulus, and bulk modulus of cocrystal models are decreased, Cauchy pressure is increased, meaning that the mechanical properties is improved. In a word, the CL-20/LLM-105 cocrystal explosive with component ratio of 2:1 has the best stability, lowest mechanical sensitivity, most desirable mechanical properties, and high energy density, it is very promising to become a novel HEDC.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Bond energy</subject><subject>Bulk density</subject><subject>Bulk modulus</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Energy</subject><subject>Flux density</subject><subject>Inorganic Chemistry</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Molecular dynamics</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Regular Article</subject><subject>Sensitivity</subject><subject>Shear modulus</subject><subject>Stability</subject><subject>Theoretical and Computational Chemistry</subject><issn>1432-881X</issn><issn>1432-2234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYh4MoOKdfwFPAc9ybP23Towx1QsXLBG8hTdOto21m0g377Y124M1DeHP4Pb-X90HolsI9BcgWAYBRQYCx-KRMSXqGZlRwRhjj4vz0l5J-XKKrEHYQ8yzJZqhab63zdmiMbnHTH20Ymo0eGtcH7Hqsce-OtsXLgjBYFMUroZBg44wfwxAJ-7VvXWiOFpcj7lxrzaHVHldjr7vGBNzZYeuqa3RR6zbYm9Oco_enx_VyRYq355flQ0EMp_lAcpoIwUAKngjDLaWQ2VonVWVtBaasUw2aAs_qPJGmTBktwdQ1GE0NY2lZ8jm6m3r33n0e4ilq5w6-jysVS4WkIpexfI7YlDLeheBtrfa-6bQfFQX1Y1NNNlVUpH5tqjRCfIJCDPcb6_-q_6G-Ae30d8w</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Hang, Gui-yun</creator><creator>Wang, Jin-tao</creator><creator>Wang, Tao</creator><creator>Shen, Hui-ming</creator><creator>Yu, Wen-li</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3936-2829</orcidid></search><sort><creationdate>20220401</creationdate><title>Theoretical investigations on a novel CL-20/LLM-105 cocrystal explosive by molecular dynamics method</title><author>Hang, Gui-yun ; Wang, Jin-tao ; Wang, Tao ; Shen, Hui-ming ; Yu, Wen-li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-915442084354c3e1107efa5ddeed0cbf6a0a1037f958cb621b0cff0ca1c226bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Bond energy</topic><topic>Bulk density</topic><topic>Bulk modulus</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Energy</topic><topic>Flux density</topic><topic>Inorganic Chemistry</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Molecular dynamics</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Regular Article</topic><topic>Sensitivity</topic><topic>Shear modulus</topic><topic>Stability</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hang, Gui-yun</creatorcontrib><creatorcontrib>Wang, Jin-tao</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Shen, Hui-ming</creatorcontrib><creatorcontrib>Yu, Wen-li</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical chemistry accounts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hang, Gui-yun</au><au>Wang, Jin-tao</au><au>Wang, Tao</au><au>Shen, Hui-ming</au><au>Yu, Wen-li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical investigations on a novel CL-20/LLM-105 cocrystal explosive by molecular dynamics method</atitle><jtitle>Theoretical chemistry accounts</jtitle><stitle>Theor Chem Acc</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>141</volume><issue>4</issue><artnum>23</artnum><issn>1432-881X</issn><eissn>1432-2234</eissn><abstract>The hexanitrohexaazaisowurtzitane/2,6-diamino-3,5-dinitropyrazine-1-oxide (CL-20/LLM-105) cocrystal models with different component ratios were established by the substitution method. The stability, sensitivity, energetic performance, and mechanical properties of CL-20, LLM-105, and CL-20/LLM-105 cocrystal models were predicted by the molecular dynamics method. The results show that the CL-20/LLM-105 cocrystal model with component ratio of 2:1 has the highest value of binding energy and is the most stable model. The cocrystal model has shorter trigger bond length than pure CL-20, but higher value of trigger bond energy and cohesive energy density, which implies that the sensitivity of cocrystal explosive is decreased. The cocrystal explosive has lower energy density than CL-20, but the cocrystal explosive with molar ratio of 10:1~2:1 still has high energy density and can be regarded as novel high energy density compound (HEDC). The tensile modulus, shear modulus, and bulk modulus of cocrystal models are decreased, Cauchy pressure is increased, meaning that the mechanical properties is improved. In a word, the CL-20/LLM-105 cocrystal explosive with component ratio of 2:1 has the best stability, lowest mechanical sensitivity, most desirable mechanical properties, and high energy density, it is very promising to become a novel HEDC.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00214-022-02886-6</doi><orcidid>https://orcid.org/0000-0003-3936-2829</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-881X |
ispartof | Theoretical chemistry accounts, 2022-04, Vol.141 (4), Article 23 |
issn | 1432-881X 1432-2234 |
language | eng |
recordid | cdi_proquest_journals_2648149884 |
source | Springer Nature - Complete Springer Journals |
subjects | Atomic/Molecular Structure and Spectra Bond energy Bulk density Bulk modulus Chemistry Chemistry and Materials Science Energy Flux density Inorganic Chemistry Mechanical properties Modulus of elasticity Molecular dynamics Organic Chemistry Physical Chemistry Regular Article Sensitivity Shear modulus Stability Theoretical and Computational Chemistry |
title | Theoretical investigations on a novel CL-20/LLM-105 cocrystal explosive by molecular dynamics method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-17T05%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20investigations%20on%20a%20novel%20CL-20/LLM-105%20cocrystal%20explosive%20by%20molecular%20dynamics%20method&rft.jtitle=Theoretical%20chemistry%20accounts&rft.au=Hang,%20Gui-yun&rft.date=2022-04-01&rft.volume=141&rft.issue=4&rft.artnum=23&rft.issn=1432-881X&rft.eissn=1432-2234&rft_id=info:doi/10.1007/s00214-022-02886-6&rft_dat=%3Cproquest_cross%3E2648149884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648149884&rft_id=info:pmid/&rfr_iscdi=true |