Theoretical investigations on a novel CL-20/LLM-105 cocrystal explosive by molecular dynamics method

The hexanitrohexaazaisowurtzitane/2,6-diamino-3,5-dinitropyrazine-1-oxide (CL-20/LLM-105) cocrystal models with different component ratios were established by the substitution method. The stability, sensitivity, energetic performance, and mechanical properties of CL-20, LLM-105, and CL-20/LLM-105 co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical chemistry accounts 2022-04, Vol.141 (4), Article 23
Hauptverfasser: Hang, Gui-yun, Wang, Jin-tao, Wang, Tao, Shen, Hui-ming, Yu, Wen-li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Theoretical chemistry accounts
container_volume 141
creator Hang, Gui-yun
Wang, Jin-tao
Wang, Tao
Shen, Hui-ming
Yu, Wen-li
description The hexanitrohexaazaisowurtzitane/2,6-diamino-3,5-dinitropyrazine-1-oxide (CL-20/LLM-105) cocrystal models with different component ratios were established by the substitution method. The stability, sensitivity, energetic performance, and mechanical properties of CL-20, LLM-105, and CL-20/LLM-105 cocrystal models were predicted by the molecular dynamics method. The results show that the CL-20/LLM-105 cocrystal model with component ratio of 2:1 has the highest value of binding energy and is the most stable model. The cocrystal model has shorter trigger bond length than pure CL-20, but higher value of trigger bond energy and cohesive energy density, which implies that the sensitivity of cocrystal explosive is decreased. The cocrystal explosive has lower energy density than CL-20, but the cocrystal explosive with molar ratio of 10:1~2:1 still has high energy density and can be regarded as novel high energy density compound (HEDC). The tensile modulus, shear modulus, and bulk modulus of cocrystal models are decreased, Cauchy pressure is increased, meaning that the mechanical properties is improved. In a word, the CL-20/LLM-105 cocrystal explosive with component ratio of 2:1 has the best stability, lowest mechanical sensitivity, most desirable mechanical properties, and high energy density, it is very promising to become a novel HEDC.
doi_str_mv 10.1007/s00214-022-02886-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2648149884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648149884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-915442084354c3e1107efa5ddeed0cbf6a0a1037f958cb621b0cff0ca1c226bb3</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4MoOKdfwFPAc9ybP23Towx1QsXLBG8hTdOto21m0g377Y124M1DeHP4Pb-X90HolsI9BcgWAYBRQYCx-KRMSXqGZlRwRhjj4vz0l5J-XKKrEHYQ8yzJZqhab63zdmiMbnHTH20Ymo0eGtcH7Hqsce-OtsXLgjBYFMUroZBg44wfwxAJ-7VvXWiOFpcj7lxrzaHVHldjr7vGBNzZYeuqa3RR6zbYm9Oco_enx_VyRYq355flQ0EMp_lAcpoIwUAKngjDLaWQ2VonVWVtBaasUw2aAs_qPJGmTBktwdQ1GE0NY2lZ8jm6m3r33n0e4ilq5w6-jysVS4WkIpexfI7YlDLeheBtrfa-6bQfFQX1Y1NNNlVUpH5tqjRCfIJCDPcb6_-q_6G-Ae30d8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648149884</pqid></control><display><type>article</type><title>Theoretical investigations on a novel CL-20/LLM-105 cocrystal explosive by molecular dynamics method</title><source>Springer Nature - Complete Springer Journals</source><creator>Hang, Gui-yun ; Wang, Jin-tao ; Wang, Tao ; Shen, Hui-ming ; Yu, Wen-li</creator><creatorcontrib>Hang, Gui-yun ; Wang, Jin-tao ; Wang, Tao ; Shen, Hui-ming ; Yu, Wen-li</creatorcontrib><description>The hexanitrohexaazaisowurtzitane/2,6-diamino-3,5-dinitropyrazine-1-oxide (CL-20/LLM-105) cocrystal models with different component ratios were established by the substitution method. The stability, sensitivity, energetic performance, and mechanical properties of CL-20, LLM-105, and CL-20/LLM-105 cocrystal models were predicted by the molecular dynamics method. The results show that the CL-20/LLM-105 cocrystal model with component ratio of 2:1 has the highest value of binding energy and is the most stable model. The cocrystal model has shorter trigger bond length than pure CL-20, but higher value of trigger bond energy and cohesive energy density, which implies that the sensitivity of cocrystal explosive is decreased. The cocrystal explosive has lower energy density than CL-20, but the cocrystal explosive with molar ratio of 10:1~2:1 still has high energy density and can be regarded as novel high energy density compound (HEDC). The tensile modulus, shear modulus, and bulk modulus of cocrystal models are decreased, Cauchy pressure is increased, meaning that the mechanical properties is improved. In a word, the CL-20/LLM-105 cocrystal explosive with component ratio of 2:1 has the best stability, lowest mechanical sensitivity, most desirable mechanical properties, and high energy density, it is very promising to become a novel HEDC.</description><identifier>ISSN: 1432-881X</identifier><identifier>EISSN: 1432-2234</identifier><identifier>DOI: 10.1007/s00214-022-02886-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic/Molecular Structure and Spectra ; Bond energy ; Bulk density ; Bulk modulus ; Chemistry ; Chemistry and Materials Science ; Energy ; Flux density ; Inorganic Chemistry ; Mechanical properties ; Modulus of elasticity ; Molecular dynamics ; Organic Chemistry ; Physical Chemistry ; Regular Article ; Sensitivity ; Shear modulus ; Stability ; Theoretical and Computational Chemistry</subject><ispartof>Theoretical chemistry accounts, 2022-04, Vol.141 (4), Article 23</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-915442084354c3e1107efa5ddeed0cbf6a0a1037f958cb621b0cff0ca1c226bb3</citedby><cites>FETCH-LOGICAL-c319t-915442084354c3e1107efa5ddeed0cbf6a0a1037f958cb621b0cff0ca1c226bb3</cites><orcidid>0000-0003-3936-2829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00214-022-02886-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00214-022-02886-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hang, Gui-yun</creatorcontrib><creatorcontrib>Wang, Jin-tao</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Shen, Hui-ming</creatorcontrib><creatorcontrib>Yu, Wen-li</creatorcontrib><title>Theoretical investigations on a novel CL-20/LLM-105 cocrystal explosive by molecular dynamics method</title><title>Theoretical chemistry accounts</title><addtitle>Theor Chem Acc</addtitle><description>The hexanitrohexaazaisowurtzitane/2,6-diamino-3,5-dinitropyrazine-1-oxide (CL-20/LLM-105) cocrystal models with different component ratios were established by the substitution method. The stability, sensitivity, energetic performance, and mechanical properties of CL-20, LLM-105, and CL-20/LLM-105 cocrystal models were predicted by the molecular dynamics method. The results show that the CL-20/LLM-105 cocrystal model with component ratio of 2:1 has the highest value of binding energy and is the most stable model. The cocrystal model has shorter trigger bond length than pure CL-20, but higher value of trigger bond energy and cohesive energy density, which implies that the sensitivity of cocrystal explosive is decreased. The cocrystal explosive has lower energy density than CL-20, but the cocrystal explosive with molar ratio of 10:1~2:1 still has high energy density and can be regarded as novel high energy density compound (HEDC). The tensile modulus, shear modulus, and bulk modulus of cocrystal models are decreased, Cauchy pressure is increased, meaning that the mechanical properties is improved. In a word, the CL-20/LLM-105 cocrystal explosive with component ratio of 2:1 has the best stability, lowest mechanical sensitivity, most desirable mechanical properties, and high energy density, it is very promising to become a novel HEDC.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Bond energy</subject><subject>Bulk density</subject><subject>Bulk modulus</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Energy</subject><subject>Flux density</subject><subject>Inorganic Chemistry</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Molecular dynamics</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Regular Article</subject><subject>Sensitivity</subject><subject>Shear modulus</subject><subject>Stability</subject><subject>Theoretical and Computational Chemistry</subject><issn>1432-881X</issn><issn>1432-2234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYh4MoOKdfwFPAc9ybP23Towx1QsXLBG8hTdOto21m0g377Y124M1DeHP4Pb-X90HolsI9BcgWAYBRQYCx-KRMSXqGZlRwRhjj4vz0l5J-XKKrEHYQ8yzJZqhab63zdmiMbnHTH20Ymo0eGtcH7Hqsce-OtsXLgjBYFMUroZBg44wfwxAJ-7VvXWiOFpcj7lxrzaHVHldjr7vGBNzZYeuqa3RR6zbYm9Oco_enx_VyRYq355flQ0EMp_lAcpoIwUAKngjDLaWQ2VonVWVtBaasUw2aAs_qPJGmTBktwdQ1GE0NY2lZ8jm6m3r33n0e4ilq5w6-jysVS4WkIpexfI7YlDLeheBtrfa-6bQfFQX1Y1NNNlVUpH5tqjRCfIJCDPcb6_-q_6G-Ae30d8w</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Hang, Gui-yun</creator><creator>Wang, Jin-tao</creator><creator>Wang, Tao</creator><creator>Shen, Hui-ming</creator><creator>Yu, Wen-li</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3936-2829</orcidid></search><sort><creationdate>20220401</creationdate><title>Theoretical investigations on a novel CL-20/LLM-105 cocrystal explosive by molecular dynamics method</title><author>Hang, Gui-yun ; Wang, Jin-tao ; Wang, Tao ; Shen, Hui-ming ; Yu, Wen-li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-915442084354c3e1107efa5ddeed0cbf6a0a1037f958cb621b0cff0ca1c226bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Bond energy</topic><topic>Bulk density</topic><topic>Bulk modulus</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Energy</topic><topic>Flux density</topic><topic>Inorganic Chemistry</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Molecular dynamics</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Regular Article</topic><topic>Sensitivity</topic><topic>Shear modulus</topic><topic>Stability</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hang, Gui-yun</creatorcontrib><creatorcontrib>Wang, Jin-tao</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Shen, Hui-ming</creatorcontrib><creatorcontrib>Yu, Wen-li</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical chemistry accounts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hang, Gui-yun</au><au>Wang, Jin-tao</au><au>Wang, Tao</au><au>Shen, Hui-ming</au><au>Yu, Wen-li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical investigations on a novel CL-20/LLM-105 cocrystal explosive by molecular dynamics method</atitle><jtitle>Theoretical chemistry accounts</jtitle><stitle>Theor Chem Acc</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>141</volume><issue>4</issue><artnum>23</artnum><issn>1432-881X</issn><eissn>1432-2234</eissn><abstract>The hexanitrohexaazaisowurtzitane/2,6-diamino-3,5-dinitropyrazine-1-oxide (CL-20/LLM-105) cocrystal models with different component ratios were established by the substitution method. The stability, sensitivity, energetic performance, and mechanical properties of CL-20, LLM-105, and CL-20/LLM-105 cocrystal models were predicted by the molecular dynamics method. The results show that the CL-20/LLM-105 cocrystal model with component ratio of 2:1 has the highest value of binding energy and is the most stable model. The cocrystal model has shorter trigger bond length than pure CL-20, but higher value of trigger bond energy and cohesive energy density, which implies that the sensitivity of cocrystal explosive is decreased. The cocrystal explosive has lower energy density than CL-20, but the cocrystal explosive with molar ratio of 10:1~2:1 still has high energy density and can be regarded as novel high energy density compound (HEDC). The tensile modulus, shear modulus, and bulk modulus of cocrystal models are decreased, Cauchy pressure is increased, meaning that the mechanical properties is improved. In a word, the CL-20/LLM-105 cocrystal explosive with component ratio of 2:1 has the best stability, lowest mechanical sensitivity, most desirable mechanical properties, and high energy density, it is very promising to become a novel HEDC.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00214-022-02886-6</doi><orcidid>https://orcid.org/0000-0003-3936-2829</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-881X
ispartof Theoretical chemistry accounts, 2022-04, Vol.141 (4), Article 23
issn 1432-881X
1432-2234
language eng
recordid cdi_proquest_journals_2648149884
source Springer Nature - Complete Springer Journals
subjects Atomic/Molecular Structure and Spectra
Bond energy
Bulk density
Bulk modulus
Chemistry
Chemistry and Materials Science
Energy
Flux density
Inorganic Chemistry
Mechanical properties
Modulus of elasticity
Molecular dynamics
Organic Chemistry
Physical Chemistry
Regular Article
Sensitivity
Shear modulus
Stability
Theoretical and Computational Chemistry
title Theoretical investigations on a novel CL-20/LLM-105 cocrystal explosive by molecular dynamics method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-17T05%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20investigations%20on%20a%20novel%20CL-20/LLM-105%20cocrystal%20explosive%20by%20molecular%20dynamics%20method&rft.jtitle=Theoretical%20chemistry%20accounts&rft.au=Hang,%20Gui-yun&rft.date=2022-04-01&rft.volume=141&rft.issue=4&rft.artnum=23&rft.issn=1432-881X&rft.eissn=1432-2234&rft_id=info:doi/10.1007/s00214-022-02886-6&rft_dat=%3Cproquest_cross%3E2648149884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648149884&rft_id=info:pmid/&rfr_iscdi=true