Sensitivity Analysis of Calibration Methods and Factors Effecting the Statistical Nature of Radiation Measurement
The scintillator detectors are recalibrated against the datasheet given by the manufacturer. Optimal and mutual dependent values of (a) high voltage at PMT (Photomultiplier Tube), (b) amplifier gain, (c) average time to count the radiation particles (set by operator), and (d) number of instances/sam...
Gespeichert in:
Veröffentlicht in: | Journal of signal processing systems 2022-04, Vol.94 (4), p.387-397 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The scintillator detectors are recalibrated against the datasheet given by the manufacturer. Optimal and mutual dependent values of (a) high voltage at PMT (Photomultiplier Tube), (b) amplifier gain, (c) average time to count the radiation particles (set by operator), and (d) number of instances/sample number are estimated. Total 5: two versions of Central Limit Theorem (CLT), (3) industry preferred Pulse Width Saturation, (4) calibration based on MPPC coupled Gamma-ray detector, and (5) gross method are used. It is shown that the CLT method is the most optimal method to calibrate the detector and its respective electronics couple. An inverse modeling-based Computerized Tomography method is used for verification. It is shown that statistically averaging results are more accurate and precise data than mode and median if the data is not skewed and a random number of samples are used during the calibration process. It is also shown that the average time to count the radiation particle is the most important parameter affecting the optimal calibration setting for precision and accurate measurements of gamma radiation. |
---|---|
ISSN: | 1939-8018 1939-8115 |
DOI: | 10.1007/s11265-021-01685-9 |