A new insight into combining forecasts for elections: The role of social media

This study is devoted to gain insight into a timely, accurate, and relevant combining forecast by considering social media (Facebook), opinion polls, and prediction markets. We transformed each type of raw data into the possibility of victory as a forecasting model. Besides the four single forecasts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forecasting 2021-01, Vol.40 (1), p.132-143
Hauptverfasser: Chin, Chih‐Yu, Wang, Cheng‐Lung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study is devoted to gain insight into a timely, accurate, and relevant combining forecast by considering social media (Facebook), opinion polls, and prediction markets. We transformed each type of raw data into the possibility of victory as a forecasting model. Besides the four single forecasts, namely Facebook fans, Facebook “people talking about this” (PTAT) statistics, opinion polls, and prediction markets, we generated three combined forecasts by associating various combinations of the four components. Then, we examined the predictive performance of each forecast on vote shares and the elected/non‐elected outcome across the election period. Our findings, based on the evidence of Taiwan's 2018 county and city elections, showed that incorporating the Facebook PTAT statistic with polls and prediction markets generates the most powerful forecast. Moreover, we recognized the matter of the time horizons where the best proposed model has better accuracy gains in prediction—in the “late of election,” but not in “approaching election”. The patterns of the trend of accuracy across time for each forecasting model also differ from one another. We also highlighted the complementarity of various types of data in the paper because each forecast makes important contributions to forecasting elections.
ISSN:0277-6693
1099-131X
DOI:10.1002/for.2711