Recent advances in ZnIn2S4-based materials towards photocatalytic purification, solar fuel production and organic transformations

The current energy crisis and environmental remediation could be mitigated using photocatalytic technology, with abundant and inexhaustible solar energy used to convert chemical fuels as well as degrade detrimental pollutants to non-toxic small molecules under mild conditions. Among emerging photoca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2022-01, Vol.10 (14), p.5400-5424
Hauptverfasser: Zhang, Tianxi, Wang, Tian, Meng, Fanlu, Yang, Minquan, Kawi, Sibudjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current energy crisis and environmental remediation could be mitigated using photocatalytic technology, with abundant and inexhaustible solar energy used to convert chemical fuels as well as degrade detrimental pollutants to non-toxic small molecules under mild conditions. Among emerging photocatalysts, zinc indium sulfide (ZnIn2S4) is a fascinating candidate widely used for various photocatalytic applications due to its nontoxicity, suitable bandgap structure, strong visible light absorption, easily controlled morphology, prominent catalytic activity and durability. This review focuses on the recent advances and future perspectives of ZnIn2S4-based photocatalysts and summarizes the various modification strategies used to enhance the photocatalytic activity of ZnIn2S4. In this context, we firstly briefly introduce the crystal structures, electronic and optical properties, and synthetic strategies of ZnIn2S4. Then, the recent advances on the different modifications of ZnIn2S4 are discussed, such as nanostructured engineering (e.g. controlling morphology nanostructures with multiple dimensions, loading of suitable cocatalysts, building of different heterojunctions and combination with carbon-based materials) and compositional engineering (e.g. introducing defects and elemental doping). Finally, the future perspective of the development of ZnIn2S4-based photocatalysts are identified. This review presents the current achievements of ZnIn2S4 photocatalysts and is expected to promote the development of ZnIn2S4-based photocatalysts for the use in efficient solar energy conversion.
ISSN:2050-7526
2050-7534
DOI:10.1039/d2tc00432a