Clay–Biomass Composites for Water Purification

Abstract Adsorption is one of the most commonly used water/wastewater treatment processes. Clays and biomasses have been studied widely as adsorbents for different classes of contaminants. However, these materials possess some drawbacks that prevent their application on a large scale. To overcome th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous, toxic and radioactive waste toxic and radioactive waste, 2022-07, Vol.26 (3)
Hauptverfasser: Rawat, Shobha, Ahammed, M. Mansoor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Adsorption is one of the most commonly used water/wastewater treatment processes. Clays and biomasses have been studied widely as adsorbents for different classes of contaminants. However, these materials possess some drawbacks that prevent their application on a large scale. To overcome their drawbacks, attempts have been made in recent years to synergistically combine these two classes of low-cost adsorbents to form a new class of materials called clay–biomass composites. This paper reviews the studies reported in the recent past on the use of these composites synthesized from clay and biomass, and subsequently modified, for removal of different classes of pollutants. Synthesis of composites by different methods, and the characterization of resulting composites are presented. Further, detailed discussion on the use of these composites for removal of different classes of pollutants such as heavy metals, dyes, nutrients, dyes, organic micropollutants and microbial pathogens is included. Various factors affecting the adsorption process along with mechanisms of removal of different pollutants by these composites are presented. Reported studies on regeneration and reuse of spent adsorbents are also given. It is evident from the literature review that the clay–biomass composites show significant enhancement of adsorption capacity for different classes of pollutants. Directions for further research for utilizing these composites in industrial applications are discussed. Overall, the paper indicates the potential of these composites for use in removal of different classes of pollutants.
ISSN:2153-5493
2153-5515
DOI:10.1061/(ASCE)HZ.2153-5515.0000703