Electron g-factor determined for quantum dot circuit fabricated from (110)-oriented GaAs quantum well

The choice of substrate orientation for semiconductor quantum dot circuits offers opportunities for tailoring spintronic properties such as g-factors for specific functionality. Here, we demonstrate the operation of a few-electron double quantum dot circuit fabricated from a (110)-oriented GaAs quan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2022-04, Vol.131 (13)
Hauptverfasser: Nakagawa, T., Lamoureux, S., Fujita, T., Ritzmann, J., Ludwig, A., Wieck, A. D., Oiwa, A., Korkusinski, M., Sachrajda, A., Austing, D. G., Gaudreau, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The choice of substrate orientation for semiconductor quantum dot circuits offers opportunities for tailoring spintronic properties such as g-factors for specific functionality. Here, we demonstrate the operation of a few-electron double quantum dot circuit fabricated from a (110)-oriented GaAs quantum well. We estimate the in-plane electron g-factor from the profile of the enhanced inter-dot tunneling (leakage) current near-zero magnetic field. Spin blockade due to Pauli exclusion can block inter-dot tunneling. However, this blockade becomes inactive due to hyperfine interaction mediated spin flip-flop processes between electron spin states and the nuclear spin of the host material. The g-factor of absolute value ∼0.1 found for a magnetic field parallel to the direction [ 1 ¯ 10 ] is approximately a factor of four lower than that for comparable circuits fabricated from a material grown on widely employed standard (001) GaAs substrates and is in line with reported values determined by purely optical means for quantum well structures grown on (110) GaAs substrates.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0086555