Acts with identities in the congruence lattice

We prove that for any act X over a finite semigroup S , the congruence lattice Con X embeds the lattice Eq M of all equivalences of an infinite set M if and only if X is infinite. Equivalently: for an act X over a finite semigroup S , the lattice Con X satisfies a non-trivial identity if and only if...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra universalis 2022-05, Vol.83 (2), Article 16
Hauptverfasser: Kozhuhov, I. B., Pryanichnikov, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that for any act X over a finite semigroup S , the congruence lattice Con X embeds the lattice Eq M of all equivalences of an infinite set M if and only if X is infinite. Equivalently: for an act X over a finite semigroup S , the lattice Con X satisfies a non-trivial identity if and only if X is finite. Similar statements are proved for an act with zero over a completely 0-simple semigroup M 0 ( G , I , Λ , P ) where | G | , | I | < ∞ . We construct examples that show that the assumption | G | , | I | < ∞ is essential.
ISSN:0002-5240
1420-8911
DOI:10.1007/s00012-022-00773-6