Acts with identities in the congruence lattice
We prove that for any act X over a finite semigroup S , the congruence lattice Con X embeds the lattice Eq M of all equivalences of an infinite set M if and only if X is infinite. Equivalently: for an act X over a finite semigroup S , the lattice Con X satisfies a non-trivial identity if and only if...
Gespeichert in:
Veröffentlicht in: | Algebra universalis 2022-05, Vol.83 (2), Article 16 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that for any act
X
over a finite semigroup
S
, the congruence lattice
Con
X
embeds the lattice
Eq
M
of all equivalences of an infinite set
M
if and only if
X
is infinite. Equivalently: for an act
X
over a finite semigroup
S
, the lattice
Con
X
satisfies a non-trivial identity if and only if
X
is finite. Similar statements are proved for an act with zero over a completely 0-simple semigroup
M
0
(
G
,
I
,
Λ
,
P
)
where
|
G
|
,
|
I
|
<
∞
. We construct examples that show that the assumption
|
G
|
,
|
I
|
<
∞
is essential. |
---|---|
ISSN: | 0002-5240 1420-8911 |
DOI: | 10.1007/s00012-022-00773-6 |