Restricting directions for Kakeya sets
We prove that the Kakeya maximal conjecture is equivalent to the \(\Omega\)-Kakeya maximal conjecture. This completes a recent result in [2] where Keleti and Math{é} proved that the Kakeya conjecture is equivalent to the \(\Omega\)-Kakeya conjecture. Moreover, we improve concrete bound on the Hausdo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-04 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the Kakeya maximal conjecture is equivalent to the \(\Omega\)-Kakeya maximal conjecture. This completes a recent result in [2] where Keleti and Math{é} proved that the Kakeya conjecture is equivalent to the \(\Omega\)-Kakeya conjecture. Moreover, we improve concrete bound on the Hausdorff dimension of a \(\Omega\)-Kakeya set : for any Bore set \(\Omega\) in S n--1 , we prove that if X \(\subset\) R n contains for any e \(\in\) \(\Omega\) a unit segment oriented along e then we have dX \(\ge\) 6 11 d\(\Omega\) + 1 where dE denotes the Hausdorff dimension of a set E. |
---|---|
ISSN: | 2331-8422 |