The Isoperimetric Problem In Randers Planes

In this paper, the isoperimetric problem in Randers planes, \((\mathbb{R}^2,F=\alpha +\beta)\), which are slight deformation of the Euclidean plane \((\mathbb{R}^2,\alpha)\) by suitable one forms \(\beta\), have been studied. We prove that the circles centred at the origin achieves the local maximum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-04
Hauptverfasser: Sahu, Arti, Gangopadhyay, Ranadip, Shah, Hemangi Madhusudan, Tiwari, Bankteshwar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the isoperimetric problem in Randers planes, \((\mathbb{R}^2,F=\alpha +\beta)\), which are slight deformation of the Euclidean plane \((\mathbb{R}^2,\alpha)\) by suitable one forms \(\beta\), have been studied. We prove that the circles centred at the origin achieves the local maximum area of the isoperimetric problem with respect to well known volume forms in Finsler geometry.
ISSN:2331-8422