The Isoperimetric Problem In Randers Planes
In this paper, the isoperimetric problem in Randers planes, \((\mathbb{R}^2,F=\alpha +\beta)\), which are slight deformation of the Euclidean plane \((\mathbb{R}^2,\alpha)\) by suitable one forms \(\beta\), have been studied. We prove that the circles centred at the origin achieves the local maximum...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-04 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the isoperimetric problem in Randers planes, \((\mathbb{R}^2,F=\alpha +\beta)\), which are slight deformation of the Euclidean plane \((\mathbb{R}^2,\alpha)\) by suitable one forms \(\beta\), have been studied. We prove that the circles centred at the origin achieves the local maximum area of the isoperimetric problem with respect to well known volume forms in Finsler geometry. |
---|---|
ISSN: | 2331-8422 |