Bipolar high‐power impulse magnetron sputtering synthesis of high‐entropy carbides

In this study, we report high‐entropy carbides synthesis with reactive bipolar high‐power impulse magnetron sputtering (HiPIMS). Uncontrolled microstructure and stoichiometry development with reactive gas flow rate are major limitations of conventional direct current (DC) and radio frequency (RF) ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2022-06, Vol.105 (6), p.3862-3873
Hauptverfasser: Hossain, Mohammad Delower, Borman, Trent, Mcllwaine, Nathaniel Seymour, Maria, Jon‐Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3873
container_issue 6
container_start_page 3862
container_title Journal of the American Ceramic Society
container_volume 105
creator Hossain, Mohammad Delower
Borman, Trent
Mcllwaine, Nathaniel Seymour
Maria, Jon‐Paul
description In this study, we report high‐entropy carbides synthesis with reactive bipolar high‐power impulse magnetron sputtering (HiPIMS). Uncontrolled microstructure and stoichiometry development with reactive gas flow rate are major limitations of conventional direct current (DC) and radio frequency (RF) magnetron sputtering of multicomponent carbides. With HiPIMS these chemically disordered crystals structurally and compositionally transform from a carbon‐deficient metallic (C/M  1), as a function of the carbon content during HiPIMS deposition. X‐ray diffraction, X‐ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, and nanoindentation hardness measurements are combined to demonstrate the three regions of synthesis domain. HiPIMS provides access to metallic, ceramic, and composite carbides with great control over the microstructure and stoichiometry, which is elusive in case of conventional DC and RF magnetron sputtering. Notably, the stoichiometric ceramic zone maintains a constant carbon to metal ratio (C/M ∼ 1) over an extended amount of methane flow before transitioning to a nanocomposite microstructure (C/M > 1). The transition zone breadth depends on materials affinity for carbon that correlates with valence electron concentration (VEC). As such, synthesis conditions for new high‐entropy carbides can be understood and predicted based on VEC.
doi_str_mv 10.1111/jace.18392
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646680582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646680582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3012-ca47b014c8958c1b0c81c61ab4a684aaff40a0ec25e27c407429c775f5f3b44a3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsbnyDgTpiaZJKZzLKW1h8KbtRtyMSkTWknMZmhzM5H8Bl9ElNHt97N5cL5vgsHgEuMJjjNzUYqPcE8r8gRGGHGcEYqXByDEUKIZCUn6BScxbhJJ644HYHXW-vdVga4tqv118end3sdoN35bhs13MlVo9vgGhh917Y62GYFY9-0ax1thM78xXSTKN9DJUNt33Q8BydGpoaL3z0GL4v58-w-Wz7dPcymy0zlCJNMSVrWCFPFK8YVrpHiWBVY1lQWnEppDEUSaUWYJqWiqKSkUmXJDDN5TanMx-Bq6PXBvXc6tmLjutCkl4IUtCg4Ypwk6nqgVHAxBm2ED3YnQy8wEgdv4uBN_HhLMB7gvd3q_h9SPE5n8yHzDYpDcu4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646680582</pqid></control><display><type>article</type><title>Bipolar high‐power impulse magnetron sputtering synthesis of high‐entropy carbides</title><source>Wiley Online Library Journals【Remote access available】</source><creator>Hossain, Mohammad Delower ; Borman, Trent ; Mcllwaine, Nathaniel Seymour ; Maria, Jon‐Paul</creator><creatorcontrib>Hossain, Mohammad Delower ; Borman, Trent ; Mcllwaine, Nathaniel Seymour ; Maria, Jon‐Paul</creatorcontrib><description>In this study, we report high‐entropy carbides synthesis with reactive bipolar high‐power impulse magnetron sputtering (HiPIMS). Uncontrolled microstructure and stoichiometry development with reactive gas flow rate are major limitations of conventional direct current (DC) and radio frequency (RF) magnetron sputtering of multicomponent carbides. With HiPIMS these chemically disordered crystals structurally and compositionally transform from a carbon‐deficient metallic (C/M &lt; 1), to a stoichiometric ceramic zone (C/M ∼ 1), and to a nanocomposite embodiment (C/M &gt; 1), as a function of the carbon content during HiPIMS deposition. X‐ray diffraction, X‐ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, and nanoindentation hardness measurements are combined to demonstrate the three regions of synthesis domain. HiPIMS provides access to metallic, ceramic, and composite carbides with great control over the microstructure and stoichiometry, which is elusive in case of conventional DC and RF magnetron sputtering. Notably, the stoichiometric ceramic zone maintains a constant carbon to metal ratio (C/M ∼ 1) over an extended amount of methane flow before transitioning to a nanocomposite microstructure (C/M &gt; 1). The transition zone breadth depends on materials affinity for carbon that correlates with valence electron concentration (VEC). As such, synthesis conditions for new high‐entropy carbides can be understood and predicted based on VEC.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.18392</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Carbides ; Carbon ; Carbon content ; carbon stoichiometry ; Ceramics ; Crystal structure ; Direct current ; Entropy ; Flow velocity ; Gas flow ; hardness ; high‐entropy carbides ; HiPIMS ; Magnetron sputtering ; Microstructure ; Nanocomposites ; Nanoindentation ; Photoelectrons ; Radio frequency ; Raman spectroscopy ; Spectrum analysis ; Stoichiometry ; Synthesis ; valence electron concentration (VEC)</subject><ispartof>Journal of the American Ceramic Society, 2022-06, Vol.105 (6), p.3862-3873</ispartof><rights>2022 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3012-ca47b014c8958c1b0c81c61ab4a684aaff40a0ec25e27c407429c775f5f3b44a3</citedby><cites>FETCH-LOGICAL-c3012-ca47b014c8958c1b0c81c61ab4a684aaff40a0ec25e27c407429c775f5f3b44a3</cites><orcidid>0000-0003-4916-9678 ; 0000-0003-4769-0339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.18392$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.18392$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Hossain, Mohammad Delower</creatorcontrib><creatorcontrib>Borman, Trent</creatorcontrib><creatorcontrib>Mcllwaine, Nathaniel Seymour</creatorcontrib><creatorcontrib>Maria, Jon‐Paul</creatorcontrib><title>Bipolar high‐power impulse magnetron sputtering synthesis of high‐entropy carbides</title><title>Journal of the American Ceramic Society</title><description>In this study, we report high‐entropy carbides synthesis with reactive bipolar high‐power impulse magnetron sputtering (HiPIMS). Uncontrolled microstructure and stoichiometry development with reactive gas flow rate are major limitations of conventional direct current (DC) and radio frequency (RF) magnetron sputtering of multicomponent carbides. With HiPIMS these chemically disordered crystals structurally and compositionally transform from a carbon‐deficient metallic (C/M &lt; 1), to a stoichiometric ceramic zone (C/M ∼ 1), and to a nanocomposite embodiment (C/M &gt; 1), as a function of the carbon content during HiPIMS deposition. X‐ray diffraction, X‐ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, and nanoindentation hardness measurements are combined to demonstrate the three regions of synthesis domain. HiPIMS provides access to metallic, ceramic, and composite carbides with great control over the microstructure and stoichiometry, which is elusive in case of conventional DC and RF magnetron sputtering. Notably, the stoichiometric ceramic zone maintains a constant carbon to metal ratio (C/M ∼ 1) over an extended amount of methane flow before transitioning to a nanocomposite microstructure (C/M &gt; 1). The transition zone breadth depends on materials affinity for carbon that correlates with valence electron concentration (VEC). As such, synthesis conditions for new high‐entropy carbides can be understood and predicted based on VEC.</description><subject>Carbides</subject><subject>Carbon</subject><subject>Carbon content</subject><subject>carbon stoichiometry</subject><subject>Ceramics</subject><subject>Crystal structure</subject><subject>Direct current</subject><subject>Entropy</subject><subject>Flow velocity</subject><subject>Gas flow</subject><subject>hardness</subject><subject>high‐entropy carbides</subject><subject>HiPIMS</subject><subject>Magnetron sputtering</subject><subject>Microstructure</subject><subject>Nanocomposites</subject><subject>Nanoindentation</subject><subject>Photoelectrons</subject><subject>Radio frequency</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><subject>Stoichiometry</subject><subject>Synthesis</subject><subject>valence electron concentration (VEC)</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKsbnyDgTpiaZJKZzLKW1h8KbtRtyMSkTWknMZmhzM5H8Bl9ElNHt97N5cL5vgsHgEuMJjjNzUYqPcE8r8gRGGHGcEYqXByDEUKIZCUn6BScxbhJJ644HYHXW-vdVga4tqv118end3sdoN35bhs13MlVo9vgGhh917Y62GYFY9-0ax1thM78xXSTKN9DJUNt33Q8BydGpoaL3z0GL4v58-w-Wz7dPcymy0zlCJNMSVrWCFPFK8YVrpHiWBVY1lQWnEppDEUSaUWYJqWiqKSkUmXJDDN5TanMx-Bq6PXBvXc6tmLjutCkl4IUtCg4Ypwk6nqgVHAxBm2ED3YnQy8wEgdv4uBN_HhLMB7gvd3q_h9SPE5n8yHzDYpDcu4</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Hossain, Mohammad Delower</creator><creator>Borman, Trent</creator><creator>Mcllwaine, Nathaniel Seymour</creator><creator>Maria, Jon‐Paul</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4916-9678</orcidid><orcidid>https://orcid.org/0000-0003-4769-0339</orcidid></search><sort><creationdate>202206</creationdate><title>Bipolar high‐power impulse magnetron sputtering synthesis of high‐entropy carbides</title><author>Hossain, Mohammad Delower ; Borman, Trent ; Mcllwaine, Nathaniel Seymour ; Maria, Jon‐Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3012-ca47b014c8958c1b0c81c61ab4a684aaff40a0ec25e27c407429c775f5f3b44a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbides</topic><topic>Carbon</topic><topic>Carbon content</topic><topic>carbon stoichiometry</topic><topic>Ceramics</topic><topic>Crystal structure</topic><topic>Direct current</topic><topic>Entropy</topic><topic>Flow velocity</topic><topic>Gas flow</topic><topic>hardness</topic><topic>high‐entropy carbides</topic><topic>HiPIMS</topic><topic>Magnetron sputtering</topic><topic>Microstructure</topic><topic>Nanocomposites</topic><topic>Nanoindentation</topic><topic>Photoelectrons</topic><topic>Radio frequency</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><topic>Stoichiometry</topic><topic>Synthesis</topic><topic>valence electron concentration (VEC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, Mohammad Delower</creatorcontrib><creatorcontrib>Borman, Trent</creatorcontrib><creatorcontrib>Mcllwaine, Nathaniel Seymour</creatorcontrib><creatorcontrib>Maria, Jon‐Paul</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain, Mohammad Delower</au><au>Borman, Trent</au><au>Mcllwaine, Nathaniel Seymour</au><au>Maria, Jon‐Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bipolar high‐power impulse magnetron sputtering synthesis of high‐entropy carbides</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2022-06</date><risdate>2022</risdate><volume>105</volume><issue>6</issue><spage>3862</spage><epage>3873</epage><pages>3862-3873</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>In this study, we report high‐entropy carbides synthesis with reactive bipolar high‐power impulse magnetron sputtering (HiPIMS). Uncontrolled microstructure and stoichiometry development with reactive gas flow rate are major limitations of conventional direct current (DC) and radio frequency (RF) magnetron sputtering of multicomponent carbides. With HiPIMS these chemically disordered crystals structurally and compositionally transform from a carbon‐deficient metallic (C/M &lt; 1), to a stoichiometric ceramic zone (C/M ∼ 1), and to a nanocomposite embodiment (C/M &gt; 1), as a function of the carbon content during HiPIMS deposition. X‐ray diffraction, X‐ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, and nanoindentation hardness measurements are combined to demonstrate the three regions of synthesis domain. HiPIMS provides access to metallic, ceramic, and composite carbides with great control over the microstructure and stoichiometry, which is elusive in case of conventional DC and RF magnetron sputtering. Notably, the stoichiometric ceramic zone maintains a constant carbon to metal ratio (C/M ∼ 1) over an extended amount of methane flow before transitioning to a nanocomposite microstructure (C/M &gt; 1). The transition zone breadth depends on materials affinity for carbon that correlates with valence electron concentration (VEC). As such, synthesis conditions for new high‐entropy carbides can be understood and predicted based on VEC.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.18392</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4916-9678</orcidid><orcidid>https://orcid.org/0000-0003-4769-0339</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2022-06, Vol.105 (6), p.3862-3873
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2646680582
source Wiley Online Library Journals【Remote access available】
subjects Carbides
Carbon
Carbon content
carbon stoichiometry
Ceramics
Crystal structure
Direct current
Entropy
Flow velocity
Gas flow
hardness
high‐entropy carbides
HiPIMS
Magnetron sputtering
Microstructure
Nanocomposites
Nanoindentation
Photoelectrons
Radio frequency
Raman spectroscopy
Spectrum analysis
Stoichiometry
Synthesis
valence electron concentration (VEC)
title Bipolar high‐power impulse magnetron sputtering synthesis of high‐entropy carbides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bipolar%20high%E2%80%90power%20impulse%20magnetron%20sputtering%20synthesis%20of%20high%E2%80%90entropy%20carbides&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Hossain,%20Mohammad%20Delower&rft.date=2022-06&rft.volume=105&rft.issue=6&rft.spage=3862&rft.epage=3873&rft.pages=3862-3873&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.18392&rft_dat=%3Cproquest_cross%3E2646680582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646680582&rft_id=info:pmid/&rfr_iscdi=true