Bipolar high‐power impulse magnetron sputtering synthesis of high‐entropy carbides
In this study, we report high‐entropy carbides synthesis with reactive bipolar high‐power impulse magnetron sputtering (HiPIMS). Uncontrolled microstructure and stoichiometry development with reactive gas flow rate are major limitations of conventional direct current (DC) and radio frequency (RF) ma...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2022-06, Vol.105 (6), p.3862-3873 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3873 |
---|---|
container_issue | 6 |
container_start_page | 3862 |
container_title | Journal of the American Ceramic Society |
container_volume | 105 |
creator | Hossain, Mohammad Delower Borman, Trent Mcllwaine, Nathaniel Seymour Maria, Jon‐Paul |
description | In this study, we report high‐entropy carbides synthesis with reactive bipolar high‐power impulse magnetron sputtering (HiPIMS). Uncontrolled microstructure and stoichiometry development with reactive gas flow rate are major limitations of conventional direct current (DC) and radio frequency (RF) magnetron sputtering of multicomponent carbides. With HiPIMS these chemically disordered crystals structurally and compositionally transform from a carbon‐deficient metallic (C/M 1), as a function of the carbon content during HiPIMS deposition. X‐ray diffraction, X‐ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, and nanoindentation hardness measurements are combined to demonstrate the three regions of synthesis domain. HiPIMS provides access to metallic, ceramic, and composite carbides with great control over the microstructure and stoichiometry, which is elusive in case of conventional DC and RF magnetron sputtering. Notably, the stoichiometric ceramic zone maintains a constant carbon to metal ratio (C/M ∼ 1) over an extended amount of methane flow before transitioning to a nanocomposite microstructure (C/M > 1). The transition zone breadth depends on materials affinity for carbon that correlates with valence electron concentration (VEC). As such, synthesis conditions for new high‐entropy carbides can be understood and predicted based on VEC. |
doi_str_mv | 10.1111/jace.18392 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646680582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646680582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3012-ca47b014c8958c1b0c81c61ab4a684aaff40a0ec25e27c407429c775f5f3b44a3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsbnyDgTpiaZJKZzLKW1h8KbtRtyMSkTWknMZmhzM5H8Bl9ElNHt97N5cL5vgsHgEuMJjjNzUYqPcE8r8gRGGHGcEYqXByDEUKIZCUn6BScxbhJJ644HYHXW-vdVga4tqv118end3sdoN35bhs13MlVo9vgGhh917Y62GYFY9-0ax1thM78xXSTKN9DJUNt33Q8BydGpoaL3z0GL4v58-w-Wz7dPcymy0zlCJNMSVrWCFPFK8YVrpHiWBVY1lQWnEppDEUSaUWYJqWiqKSkUmXJDDN5TanMx-Bq6PXBvXc6tmLjutCkl4IUtCg4Ypwk6nqgVHAxBm2ED3YnQy8wEgdv4uBN_HhLMB7gvd3q_h9SPE5n8yHzDYpDcu4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646680582</pqid></control><display><type>article</type><title>Bipolar high‐power impulse magnetron sputtering synthesis of high‐entropy carbides</title><source>Wiley Online Library Journals【Remote access available】</source><creator>Hossain, Mohammad Delower ; Borman, Trent ; Mcllwaine, Nathaniel Seymour ; Maria, Jon‐Paul</creator><creatorcontrib>Hossain, Mohammad Delower ; Borman, Trent ; Mcllwaine, Nathaniel Seymour ; Maria, Jon‐Paul</creatorcontrib><description>In this study, we report high‐entropy carbides synthesis with reactive bipolar high‐power impulse magnetron sputtering (HiPIMS). Uncontrolled microstructure and stoichiometry development with reactive gas flow rate are major limitations of conventional direct current (DC) and radio frequency (RF) magnetron sputtering of multicomponent carbides. With HiPIMS these chemically disordered crystals structurally and compositionally transform from a carbon‐deficient metallic (C/M < 1), to a stoichiometric ceramic zone (C/M ∼ 1), and to a nanocomposite embodiment (C/M > 1), as a function of the carbon content during HiPIMS deposition. X‐ray diffraction, X‐ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, and nanoindentation hardness measurements are combined to demonstrate the three regions of synthesis domain. HiPIMS provides access to metallic, ceramic, and composite carbides with great control over the microstructure and stoichiometry, which is elusive in case of conventional DC and RF magnetron sputtering. Notably, the stoichiometric ceramic zone maintains a constant carbon to metal ratio (C/M ∼ 1) over an extended amount of methane flow before transitioning to a nanocomposite microstructure (C/M > 1). The transition zone breadth depends on materials affinity for carbon that correlates with valence electron concentration (VEC). As such, synthesis conditions for new high‐entropy carbides can be understood and predicted based on VEC.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.18392</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Carbides ; Carbon ; Carbon content ; carbon stoichiometry ; Ceramics ; Crystal structure ; Direct current ; Entropy ; Flow velocity ; Gas flow ; hardness ; high‐entropy carbides ; HiPIMS ; Magnetron sputtering ; Microstructure ; Nanocomposites ; Nanoindentation ; Photoelectrons ; Radio frequency ; Raman spectroscopy ; Spectrum analysis ; Stoichiometry ; Synthesis ; valence electron concentration (VEC)</subject><ispartof>Journal of the American Ceramic Society, 2022-06, Vol.105 (6), p.3862-3873</ispartof><rights>2022 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3012-ca47b014c8958c1b0c81c61ab4a684aaff40a0ec25e27c407429c775f5f3b44a3</citedby><cites>FETCH-LOGICAL-c3012-ca47b014c8958c1b0c81c61ab4a684aaff40a0ec25e27c407429c775f5f3b44a3</cites><orcidid>0000-0003-4916-9678 ; 0000-0003-4769-0339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.18392$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.18392$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Hossain, Mohammad Delower</creatorcontrib><creatorcontrib>Borman, Trent</creatorcontrib><creatorcontrib>Mcllwaine, Nathaniel Seymour</creatorcontrib><creatorcontrib>Maria, Jon‐Paul</creatorcontrib><title>Bipolar high‐power impulse magnetron sputtering synthesis of high‐entropy carbides</title><title>Journal of the American Ceramic Society</title><description>In this study, we report high‐entropy carbides synthesis with reactive bipolar high‐power impulse magnetron sputtering (HiPIMS). Uncontrolled microstructure and stoichiometry development with reactive gas flow rate are major limitations of conventional direct current (DC) and radio frequency (RF) magnetron sputtering of multicomponent carbides. With HiPIMS these chemically disordered crystals structurally and compositionally transform from a carbon‐deficient metallic (C/M < 1), to a stoichiometric ceramic zone (C/M ∼ 1), and to a nanocomposite embodiment (C/M > 1), as a function of the carbon content during HiPIMS deposition. X‐ray diffraction, X‐ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, and nanoindentation hardness measurements are combined to demonstrate the three regions of synthesis domain. HiPIMS provides access to metallic, ceramic, and composite carbides with great control over the microstructure and stoichiometry, which is elusive in case of conventional DC and RF magnetron sputtering. Notably, the stoichiometric ceramic zone maintains a constant carbon to metal ratio (C/M ∼ 1) over an extended amount of methane flow before transitioning to a nanocomposite microstructure (C/M > 1). The transition zone breadth depends on materials affinity for carbon that correlates with valence electron concentration (VEC). As such, synthesis conditions for new high‐entropy carbides can be understood and predicted based on VEC.</description><subject>Carbides</subject><subject>Carbon</subject><subject>Carbon content</subject><subject>carbon stoichiometry</subject><subject>Ceramics</subject><subject>Crystal structure</subject><subject>Direct current</subject><subject>Entropy</subject><subject>Flow velocity</subject><subject>Gas flow</subject><subject>hardness</subject><subject>high‐entropy carbides</subject><subject>HiPIMS</subject><subject>Magnetron sputtering</subject><subject>Microstructure</subject><subject>Nanocomposites</subject><subject>Nanoindentation</subject><subject>Photoelectrons</subject><subject>Radio frequency</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><subject>Stoichiometry</subject><subject>Synthesis</subject><subject>valence electron concentration (VEC)</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKsbnyDgTpiaZJKZzLKW1h8KbtRtyMSkTWknMZmhzM5H8Bl9ElNHt97N5cL5vgsHgEuMJjjNzUYqPcE8r8gRGGHGcEYqXByDEUKIZCUn6BScxbhJJ644HYHXW-vdVga4tqv118end3sdoN35bhs13MlVo9vgGhh917Y62GYFY9-0ax1thM78xXSTKN9DJUNt33Q8BydGpoaL3z0GL4v58-w-Wz7dPcymy0zlCJNMSVrWCFPFK8YVrpHiWBVY1lQWnEppDEUSaUWYJqWiqKSkUmXJDDN5TanMx-Bq6PXBvXc6tmLjutCkl4IUtCg4Ypwk6nqgVHAxBm2ED3YnQy8wEgdv4uBN_HhLMB7gvd3q_h9SPE5n8yHzDYpDcu4</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Hossain, Mohammad Delower</creator><creator>Borman, Trent</creator><creator>Mcllwaine, Nathaniel Seymour</creator><creator>Maria, Jon‐Paul</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4916-9678</orcidid><orcidid>https://orcid.org/0000-0003-4769-0339</orcidid></search><sort><creationdate>202206</creationdate><title>Bipolar high‐power impulse magnetron sputtering synthesis of high‐entropy carbides</title><author>Hossain, Mohammad Delower ; Borman, Trent ; Mcllwaine, Nathaniel Seymour ; Maria, Jon‐Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3012-ca47b014c8958c1b0c81c61ab4a684aaff40a0ec25e27c407429c775f5f3b44a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbides</topic><topic>Carbon</topic><topic>Carbon content</topic><topic>carbon stoichiometry</topic><topic>Ceramics</topic><topic>Crystal structure</topic><topic>Direct current</topic><topic>Entropy</topic><topic>Flow velocity</topic><topic>Gas flow</topic><topic>hardness</topic><topic>high‐entropy carbides</topic><topic>HiPIMS</topic><topic>Magnetron sputtering</topic><topic>Microstructure</topic><topic>Nanocomposites</topic><topic>Nanoindentation</topic><topic>Photoelectrons</topic><topic>Radio frequency</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><topic>Stoichiometry</topic><topic>Synthesis</topic><topic>valence electron concentration (VEC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, Mohammad Delower</creatorcontrib><creatorcontrib>Borman, Trent</creatorcontrib><creatorcontrib>Mcllwaine, Nathaniel Seymour</creatorcontrib><creatorcontrib>Maria, Jon‐Paul</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain, Mohammad Delower</au><au>Borman, Trent</au><au>Mcllwaine, Nathaniel Seymour</au><au>Maria, Jon‐Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bipolar high‐power impulse magnetron sputtering synthesis of high‐entropy carbides</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2022-06</date><risdate>2022</risdate><volume>105</volume><issue>6</issue><spage>3862</spage><epage>3873</epage><pages>3862-3873</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>In this study, we report high‐entropy carbides synthesis with reactive bipolar high‐power impulse magnetron sputtering (HiPIMS). Uncontrolled microstructure and stoichiometry development with reactive gas flow rate are major limitations of conventional direct current (DC) and radio frequency (RF) magnetron sputtering of multicomponent carbides. With HiPIMS these chemically disordered crystals structurally and compositionally transform from a carbon‐deficient metallic (C/M < 1), to a stoichiometric ceramic zone (C/M ∼ 1), and to a nanocomposite embodiment (C/M > 1), as a function of the carbon content during HiPIMS deposition. X‐ray diffraction, X‐ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, and nanoindentation hardness measurements are combined to demonstrate the three regions of synthesis domain. HiPIMS provides access to metallic, ceramic, and composite carbides with great control over the microstructure and stoichiometry, which is elusive in case of conventional DC and RF magnetron sputtering. Notably, the stoichiometric ceramic zone maintains a constant carbon to metal ratio (C/M ∼ 1) over an extended amount of methane flow before transitioning to a nanocomposite microstructure (C/M > 1). The transition zone breadth depends on materials affinity for carbon that correlates with valence electron concentration (VEC). As such, synthesis conditions for new high‐entropy carbides can be understood and predicted based on VEC.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.18392</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4916-9678</orcidid><orcidid>https://orcid.org/0000-0003-4769-0339</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2022-06, Vol.105 (6), p.3862-3873 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2646680582 |
source | Wiley Online Library Journals【Remote access available】 |
subjects | Carbides Carbon Carbon content carbon stoichiometry Ceramics Crystal structure Direct current Entropy Flow velocity Gas flow hardness high‐entropy carbides HiPIMS Magnetron sputtering Microstructure Nanocomposites Nanoindentation Photoelectrons Radio frequency Raman spectroscopy Spectrum analysis Stoichiometry Synthesis valence electron concentration (VEC) |
title | Bipolar high‐power impulse magnetron sputtering synthesis of high‐entropy carbides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bipolar%20high%E2%80%90power%20impulse%20magnetron%20sputtering%20synthesis%20of%20high%E2%80%90entropy%20carbides&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Hossain,%20Mohammad%20Delower&rft.date=2022-06&rft.volume=105&rft.issue=6&rft.spage=3862&rft.epage=3873&rft.pages=3862-3873&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.18392&rft_dat=%3Cproquest_cross%3E2646680582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646680582&rft_id=info:pmid/&rfr_iscdi=true |