Bipolar high‐power impulse magnetron sputtering synthesis of high‐entropy carbides

In this study, we report high‐entropy carbides synthesis with reactive bipolar high‐power impulse magnetron sputtering (HiPIMS). Uncontrolled microstructure and stoichiometry development with reactive gas flow rate are major limitations of conventional direct current (DC) and radio frequency (RF) ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2022-06, Vol.105 (6), p.3862-3873
Hauptverfasser: Hossain, Mohammad Delower, Borman, Trent, Mcllwaine, Nathaniel Seymour, Maria, Jon‐Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we report high‐entropy carbides synthesis with reactive bipolar high‐power impulse magnetron sputtering (HiPIMS). Uncontrolled microstructure and stoichiometry development with reactive gas flow rate are major limitations of conventional direct current (DC) and radio frequency (RF) magnetron sputtering of multicomponent carbides. With HiPIMS these chemically disordered crystals structurally and compositionally transform from a carbon‐deficient metallic (C/M  1), as a function of the carbon content during HiPIMS deposition. X‐ray diffraction, X‐ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, and nanoindentation hardness measurements are combined to demonstrate the three regions of synthesis domain. HiPIMS provides access to metallic, ceramic, and composite carbides with great control over the microstructure and stoichiometry, which is elusive in case of conventional DC and RF magnetron sputtering. Notably, the stoichiometric ceramic zone maintains a constant carbon to metal ratio (C/M ∼ 1) over an extended amount of methane flow before transitioning to a nanocomposite microstructure (C/M > 1). The transition zone breadth depends on materials affinity for carbon that correlates with valence electron concentration (VEC). As such, synthesis conditions for new high‐entropy carbides can be understood and predicted based on VEC.
ISSN:0002-7820
1551-2916
DOI:10.1111/jace.18392